首页> 外文期刊>Rapid prototyping journal >Coupling additive manufacturing and low-temperature sintering: a fast processing route of silicate glassy matrix
【24h】

Coupling additive manufacturing and low-temperature sintering: a fast processing route of silicate glassy matrix

机译:Coupling additive manufacturing and low-temperature sintering: a fast processing route of silicate glassy matrix

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose The low-temperature sintering of silica glass combined with additive manufacturing (AM) technology has brought a revolutionary change in glass manufacturing. This study aims to carry out in an attempt to achieve precious manufacturing of silicate glassy matrix through the method of slurry extrusion. Design/methodology/approach A low-cost slurry extrusion modelling technology is used to extrude silicate glassy matrix inks, composed of silicate glass powder with different amounts of additives. Extrudability of the inks, their printability window and the featuring curves of silicate glassy matrix are investigated. In addition, the properties of the low-temperature sintering green part as a functional part are explored and evaluated from morphology, hardness and colour. Findings The results showed that the particle size was mainly distributed from 1.4 mu m to 5.3 mu m, showing better slurry stability and print continuity. The parameters were set to 8 mm/s, 80% and 0.4 mm, respectively, to achieve better forming of three-dimensional (3D) samples. Besides, the organic binder removal step was concentrated on 200 degrees C-300 degrees C and 590 degrees C-650 degrees C was the fusion bonding temperature of the powder. The hardness values of 10 test samples ranged from 588 HL to 613 HL, which met the requirements of hard stones with super-strong mechanical strength. In addition, the mutual penetration of elements caused by temperature changes may lead to a colourful appearance. Originality/value The custom continuous AM technology enables the fabrication of a glass matrix with 3D structural features. The precise positioning technology of the glass matrix is expected to be applied more widely in functional parts.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号