首页> 外文期刊>Advanced energy materials >Mechanistic Elucidation of Electronically Conductive PEDOT:PSS Tailored Binder for a Potassium-Ion Battery Graphite Anode: Electrochemical, Mechanical, and Thermal Safety Aspects
【24h】

Mechanistic Elucidation of Electronically Conductive PEDOT:PSS Tailored Binder for a Potassium-Ion Battery Graphite Anode: Electrochemical, Mechanical, and Thermal Safety Aspects

机译:Mechanistic Elucidation of Electronically Conductive PEDOT:PSS Tailored Binder for a Potassium-Ion Battery Graphite Anode: Electrochemical, Mechanical, and Thermal Safety Aspects

获取原文
获取原文并翻译 | 示例
           

摘要

Potassium-ion batteries (KIBs) are considered more appropriate for grid-scale storage than lithium-ion batteries (LIBs) due to similar operating chemistry, abundant precursors, and compatibility with low-cost graphite anodes. However, a larger ion reduces rate capabilities and exacerbates capacity fading from volumetric expansion. Herein, conductive polymer, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), is substituted for standard insulating polyvinylidene fluoride (PVDF). Half-cells using carbon black (CB) in continuously conductive PEDOT:PSS/CB binder outperforms PVDF/CB by mitigating electrically isolated "dead" graphite, improving 100 cycle capacity retention at C/10 from 63 to 80%. Enhanced electrical contact with PEDOT:PSS/CB also reduces ion impedance and improves rate capabilities. Without CB however, PEDOT:PSS binder performs poorly in electrochemical studies despite promising ex situ electronic conductivity. This discrepancy is mechanistically elucidated through identification of redox activity between PEDOT:PSS and K+ which results in high impedances in the anode operating voltage window. Additionally, the impact of conducting binder on mechanical properties and thermal safety of the anode is investigated. Brittleness and poor wettability of PEDOT:PSS are identified as issues, but greater stability against reactive KC8 reduces overall heat generation. Binder substitution offers a promising means of mitigating issues with current KIB anodes regardless of active material, and the work herein addresses issues towards further improvement.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号