首页> 外文期刊>Energy & Fuels >Surface Complexation Modeling of HPAM Polymer-Brine-Sandstone Interfaces for Application in Low- Salinity Polymer Flooding
【24h】

Surface Complexation Modeling of HPAM Polymer-Brine-Sandstone Interfaces for Application in Low- Salinity Polymer Flooding

机译:Surface Complexation Modeling of HPAM Polymer-Brine-Sandstone Interfaces for Application in Low- Salinity Polymer Flooding

获取原文
获取原文并翻译 | 示例
       

摘要

Understanding the synergetic effects of wettability alteration by low-salinity waterflooding and mobility control by polymer flooding are important to assess the outcome of low-salinity polymer flooding in sandstone reservoirs. Moreover, investigating the interfacial chemical interactions within a polymer-brine-sandstone rock system allows for further understanding of the mechanistic mechanisms that dictate hydrolyzed polyacrylamide (HPAM) polymer's viscosity and adsorption on the sandstone surface. In this work, we utilize triple-layer surface complexation modeling in combination with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to investigate the HPAM polymer-brine and sandstone-brine interactions that govern the polymer rheological properties. The ζ potential predicted from the proposed triple-layer model was used to investigate how salinity, polymer concentration, and temperature affect the viscosity of the HPAM polymer. We also propose the application of the novel concept of maximum energy barrier, calculated from the DLVO theory's interaction potential curve, as an indicator of polymer adsorption on the rock surface. Analysis revealed that polymer solution viscosity and ζ potential are potentially inherently correlated. Moreover, analysis results showed that the maximum energy barrier can indeed be used to predict the polymer adsorption on the rock surface. Analysis of the factors controlling polymer adsorption using the maximum energy barrier concept led to the conclusion that higher brine salinity and lower temperature result in higher polymer adsorption. This is explained by the reduction in the energy barrier when higher brine salinity and lower temperature are encountered, which results in lower system stability leading to higher attraction between the polymer chains and the rock surface.

著录项

  • 来源
    《Energy & Fuels》 |2023年第9期|6585-6600|共16页
  • 作者

    Motaz Saeed; Prashant Jadhawar;

  • 作者单位

    School of Engineering, University of Aberdeen, Aberdeen AB24 3UE Scotland, U.K.;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 英语
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号