...
首页> 外文期刊>Monthly weather review >An Ensemble Forecasting Method for Dealing with the Combined Effects of the Initial and Model Errors and a Potential Deep Learning Implementation
【24h】

An Ensemble Forecasting Method for Dealing with the Combined Effects of the Initial and Model Errors and a Potential Deep Learning Implementation

机译:An Ensemble Forecasting Method for Dealing with the Combined Effects of the Initial and Model Errors and a Potential Deep Learning Implementation

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, a new nonlinear forcing singular vector (NFSV) approach is proposed to provide mutually independent optimally combined modes of initial perturbations and model perturbations (C-NFSVs) in ensemble forecasts. The C-NFSVs are a group of optimally growing structures that take into account the impact of the interaction between the initial errors and the model errors effectively, generalizing the original NFSV for simulations of the impact of the model errors. The C-NFSVs method is tested in the context of the Lorenz-96 model to demonstrate its potential to improve ensemble forecast skills. This method is compared with the orthogonal conditional nonlinear optimal perturbations (O-CNOPs) method for estimating only the initial uncertainties and the orthogonal NFSVs (O-NFSVs) for estimating only the model uncertainties. The results demonstrate that when both the initial perturbations and model perturbations are introduced in the forecasting system, the C-NFSVs are much more capable of achieving higher ensemble forecasting skills. The use of a deep learning approach as a remedy for the expensive computational costs of the C-NFSVs is evaluated. The results show that learning the impact of the C-NFSVs on the ensemble provides a useful and efficient alternative for the operational implementation of C-NFSVs in forecasting suites dealing with the combined effects of the initial errors and the model errors. Significance StatementA new ensemble forecasting method for dealing with combined effects of initial errors and model errors, i.e., the C-NFSVs, is proposed, which is an extension of the NFSV approach for simulating the model error effects in ensemble forecasts. The C-NFSVs provide mutually independent optimally combined modes of initial perturbations and model perturbations. This new method is tested for generating ensemble forecasts in the context of the Lorenz-96 model, and there are indications that the optimally growing structures may provide reliable ensemble forecasts. Furthermore, it is found that a hybrid dynamical-deep learning approach could be a potential avenue for real-time ensemble forecasting systems when perturbations combine the impact of the initial and the model errors.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号