首页> 外文期刊>Computers & operations research >A multi-objective linear programming model for scheduling part families and designing a group layout in cellular manufacturing systems
【24h】

A multi-objective linear programming model for scheduling part families and designing a group layout in cellular manufacturing systems

机译:A multi-objective linear programming model for scheduling part families and designing a group layout in cellular manufacturing systems

获取原文
获取原文并翻译 | 示例
           

摘要

Different industries compete to attract customers in different ways. In the field of production, group technology (GT) is defined by identifying and grouping similar parts based on their similarities in design and production. Cellular manufacturing (CM) is an application of GT to reconfigure the factory and job shop design. A manufacturing cell is a group of independent machines with different functions put together to produce a family of parts. Designing a cellular manufacturing system involves three major decisions: cell formation (CF), group layout (GL), and group scheduling (GS). Although these decisions are interrelated and can affect each other, they have been considered separately or sequentially in previous research. In this paper, CF, GL, and GS decisions are considered simultaneously. Accordingly, a multi-objective linear programming (MOLP) model is proposed to optimize weighted completion time, transportation cost, and machine idle time for a multi-product system. Finally, the model will be solved using the epsilon-constraint method, representing different scales solutions for decision-making. The proposed model is NP-hard. Therefore, a nondominated sorting genetic algorithm II (NSGA-II) is presented to solve it since GAMS software is unable to find optimal solutions for large-scale problems. Besides, to evaluate the performance of NSGA-II, the problem is solved by three metaheuristic algorithms.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号