...
首页> 外文期刊>Mathematical Problems in Engineering: Theory, Methods and Applications >An Internet of Things (IoT) Based Block Chain Technology to Enhance the Quality of Supply Chain Management (SCM)
【24h】

An Internet of Things (IoT) Based Block Chain Technology to Enhance the Quality of Supply Chain Management (SCM)

机译:An Internet of Things (IoT) Based Block Chain Technology to Enhance the Quality of Supply Chain Management (SCM)

获取原文
获取原文并翻译 | 示例

摘要

Recent technological developments indicate possible advancements in supply chain management (SCM). These innovations have attracted a lot of interest from industries including logistics, manufacturing, packaging, and transportation. The conventional systems, however, use centralised servers to control all operations, including the exchange of raw materials, making orders, dealing with buyers and sellers, and updating orders. The network’s supply chain may thus be insecure as a result of every activity being routed via centralised servers. The danger is additionally increased by a number of difficulties, including scalability, data integrity, security, and availability. Block chain technology may be used in these circumstances to decentralise transaction processing and eliminate the need for a centralised controller. In this approach, the performance of the resource-constrained supply chain network is improved by the effective use of edge computing and priority data access. The Intelligent K-Means (IKM) clustering algorithm is suggested across the edge nodes in the current research to categorise the priority level of each piece of data. This classifier determines if the edge node has received data that is high priority or low priority. Low priority data is recorded in the log files for future data analysis. Then, to allow safe data flow in the open block chain while excluding outside parties, the High Priority Access based Smart Contract (HPASC) technique is deployed. The whole experiment was conducted in a Python environment, and variables including scalability, reaction time, throughput, and accuracy were studied. Current systems’ constrained block sizes and fork creation lengthen the time transactions must wait before being processed. The suggested methodology is quicker and uses less storage space than current block chain systems. The results show that the suggested approach works better than current blockchain technology to raise the standard of supply chain management.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号