首页> 外文期刊>Journal of classification >Infinite Mixtures of Multivariate Normal-Inverse Gaussian Distributions for Clustering of Skewed Data
【24h】

Infinite Mixtures of Multivariate Normal-Inverse Gaussian Distributions for Clustering of Skewed Data

机译:Infinite Mixtures of Multivariate Normal-Inverse Gaussian Distributions for Clustering of Skewed Data

获取原文
获取原文并翻译 | 示例
       

摘要

Abstract Mixtures of multivariate normal inverse Gaussian (MNIG) distributions can be used to cluster data that exhibit features such as skewness and heavy tails. For cluster analysis, using a traditional finite mixture model framework, the number of components either needs to be known a priori or needs to be estimated a posteriori using some model selection criterion after deriving results for a range of possible number of components. However, different model selection criteria can sometimes result in different numbers of components yielding uncertainty. Here, an infinite mixture model framework, also known as Dirichlet process mixture model, is proposed for the mixtures of MNIG distributions. This Dirichlet process mixture model approach allows the number of components to grow or decay freely from 1 to ∞documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$infty$$end{document} (in practice from 1 to N) and the number of components is inferred along with the parameter estimates in a Bayesian framework, thus alleviating the need for model selection criteria. We run our algorithm on simulated as well as real benchmark datasets and compare with other clustering approaches. The proposed method provides competitive results for both simulations and real data.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号