首页> 外文期刊>International journal of energy research >Thermodynamic analysis of a novel fossil-fuel-free energy storage system with a trans-critical carbon dioxide cycle and heat pump
【24h】

Thermodynamic analysis of a novel fossil-fuel-free energy storage system with a trans-critical carbon dioxide cycle and heat pump

机译:Thermodynamic analysis of a novel fossil-fuel-free energy storage system with a trans-critical carbon dioxide cycle and heat pump

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents and analyzes a novel fossil-fuel-free trans-critical energy storage system that uses CO2 as the working fluid in a closed loop shuttled between two saline aquifers or caverns at different depths: one a low-pressure reservoir and the other a high-pressure reservoir. Thermal energy storage and a heat pump are adopted to eliminate the need for external natural gas for heating the CO2 entering the energy recovery turbines. We carefully analyze the energy storage and recovery processes to reveal the actual efficiency of the system. We also highlight thermodynamic and sensitivity analyses of the performance of this fossil-fuel-free trans-critical energy storage system based on a steady-state mathematical method. It is found that the fossil-fuel-free trans-critical CO2 energy storage system has good comprehensive thermodynamic performance. The exergy efficiency, round-trip efficiency, and energy storage efficiency are 67.89%, 66%, and 58.41%, and the energy generated of per unit storage volume is 2.12 kW center dot h/m(3), and the main contribution to exergy destruction is the turbine reheater, from which we can quantify how performance can be improved. Moreover, with a higher energy storage and recovery pressure and lower pressure in the low-pressure reservoir, this novel system shows promising performance.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号