首页> 外文期刊>Analytical and bioanalytical chemistry >Bimetallic FeMn@C derived from Prussian blue analogue as efficient nanozyme for glucose detection
【24h】

Bimetallic FeMn@C derived from Prussian blue analogue as efficient nanozyme for glucose detection

机译:Bimetallic FeMn@C derived from Prussian blue analogue as efficient nanozyme for glucose detection

获取原文
获取原文并翻译 | 示例
           

摘要

In recent decades, nanomaterial-based artificial enzymes called nanozymes have received more and more attention and have been applied in biological, chemical, medical, and other fields. In this work, bimetallic FeMn@C was synthesized by calcination from the Prussian blue analogue. The synthesized bimetallic FeMn@C exhibits efficient peroxidase-like activity. The effect of Mn doping amount, catalytic kinetics, and mechanism of FeMn@C nanozyme was further studied in detail. The results show that the peroxidase-like activity of bimetallic FeMn@C is nearly 16 times higher than that of single-metal Fe@C. The peroxidase-like activity of FeMn@C originates from its production of radicals. Compared with natural enzymes, FeMn@C nanozyme has a better affinity for the substrates. Besides, FeMn@C nanozyme has better stability than natural enzymes. Because of its strong magnetism, FeMn@C nanozyme can be recycled easily and exhibits excellent recycling performance. Based on the good affinity of FeMn@C for H2O2, a rapid and selective colorimetric assay for glucose detection is constructed, with a wide linear range of 0.01-0.75 mM and low detection limit of 4.28 mu M. This sensor has been successfully applied to the determination of glucose in fruit juice, showing good selectivity and accuracy. The synthesis of bimetallic FeMn@C provides a feasible way to design nanozymes with excellent catalytic activity, high stability, and easy separation.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号