...
【24h】

Elliptical-Core Highly Nonlinear Few-Mode Fiber Based OXC for WDM-MDM Networks

机译:Elliptical-Core Highly Nonlinear Few-Mode Fiber Based OXC for WDM-MDM Networks

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In order to realize an optical cross-connect (OXC) converting wavelengths and spatial modes into one-dimensional switching ports, we propose an active mode selective conversion without parasitic wavelength conversion, based on the intermodal four-wave mixing (FWM) arising in a few-mode fiber (FMF). First, we design a dispersion-engineered elliptical-core highly nonlinear FMF (e-HNL-FMF) with a graded refractive index (RI) profile, which can independently guide 3 linearly polarized (LP) spatial modes. Meanwhile, a high doping concentration of germanium in the core leads to relatively high intermodal nonlinear coefficients of 3.23 (W·km)&sup&?1&/sup& between LP&sub&01&/sub& and LP&sub&11a&/sub& modes and 3.14 (W·km)&sup&?1&/sup& between LP&sub&01&/sub& and LP&sub&11b&/sub& modes. Next, we propose an e-HNL-FMF based OXC scheme for wavelength division multiplexing-mode division multiplexing (WDM-MDM) networks. After optimizing both the e-HNL-FMF length and pump power, we can realize either active mode selective conversion over the designated wavelength-band or three-wavelength to three-mode superchannel conversion for 100 Gbaud 16-quadratic-amplitude modulation (16-QAM) signals over the C-band. Due to excellent characteristics of the e-HNL-FMF, both cost and configuration complexity of the OXC can be reduced, showing great potentials for all-optical signal processing in the future WDM-MDM networks.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号