首页> 外文期刊>Environmental Science & Technology: ES&T >Fugacity-Based Trophic Magnification Factors Characterize Bioaccumulation of Cyclic Methyl Siloxanes within an Urban Terrestrial Avian Food Web: Importance of Organism Body Temperature and Composition
【24h】

Fugacity-Based Trophic Magnification Factors Characterize Bioaccumulation of Cyclic Methyl Siloxanes within an Urban Terrestrial Avian Food Web: Importance of Organism Body Temperature and Composition

机译:Fugacity-Based Trophic Magnification Factors Characterize Bioaccumulation of Cyclic Methyl Siloxanes within an Urban Terrestrial Avian Food Web: Importance of Organism Body Temperature and Composition

获取原文
获取原文并翻译 | 示例
       

摘要

Trophic magnification of cyclic volatile methyl siloxanes (cVMS) in a terrestrial food web was investigated by measuring concentrations of octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) and two reference chemicals within air and biota samples from an avian food web located in a mixed urban-agricultural landscape. Terrestrial trophic magnification factors derived from lipid normalized concentrations (TMFLs) for D5 and D6 were 0.94 (0.17 SE) and 1.1 (0.23 SE) and not statistically different from 1 (p > 0.05); however, the TMFL of D4 was 0.62 (0.11 SE) and statistically less than 1 (p < 0.001). TMFLs of PCB-153 and p,p'-DDE were 5.6 (2.2 SE) and 6.1 (2.8 SE) and statistically greater than 1 (p < 0.001). TMFLs of cVMS in this terrestrial system were similar to those reported in aquatic systems. However, trophic magnification factors derived on a fugacity basis (TMFFs), which recognize differences in body temperature and lipid composition between organisms, were greater than corresponding TMFLs primarily because a temperature-induced thermodynamic biomagnification of hydrophobic chemicals occurs when endothermic organisms consume poikilothermic organisms. Therefore, we recommend that biomagnification studies of food webs including endothermic and poikilothermic organisms incorporate differences in body temperature and tissue composition to accurately characterize the biomagnification potential of chemicals.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号