首页> 外文期刊>International journal of applied ceramic technology >Effect of high-energy ball milling on the microstructure and properties of ultrafine gradient cemented carbides
【24h】

Effect of high-energy ball milling on the microstructure and properties of ultrafine gradient cemented carbides

机译:Effect of high-energy ball milling on the microstructure and properties of ultrafine gradient cemented carbides

获取原文
获取原文并翻译 | 示例
       

摘要

Planetary low-temperature high-energy ball mill was used for preparing the mixed powders with different particle sizes by adjusting the milling time. The ultrafine grain gradient cemented carbides were prepared by sinter-HIP treatment. The effects of milling time on the gradient formation, grain growth, and mechanical properties of ultrafine grain gradient cemented carbides were investigated. The results show that the high-energy ball milling cannot effectively reduce the particle size of mixed powder with short milling time. In addition, the particle size of the mixed powder is significantly reduced, while the specific surface area is significantly increased when the ball milling time exceeds 25 hours. The gradient layer thickness and the grain size increase at the beginning and then decrease when the mixed powder particle size was decreased. Simultaneously, the density, hardness, and fracture toughness of the alloy increase gradually. On the contrary, the number of WC with abnormal grain growth is significantly increased. The thickness of the gradient layer reached 32 mu m, and the mean WC grain size is 314 nm. Based on the analyzed results, an optimized gradient layer thickness, grain size, density, and hardness can be obtained when the ball milling time is 35 hours.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号