...
首页> 外文期刊>Cells tissues organs >A Biomaterial Model to Assess the Effects of Age in Vascularization
【24h】

A Biomaterial Model to Assess the Effects of Age in Vascularization

机译:A Biomaterial Model to Assess the Effects of Age in Vascularization

获取原文
获取原文并翻译 | 示例
           

摘要

As humans age, there is an increased risk for developing age-associated diseases. Many of these diseases, such as cardiovascular disease, involve dysfunction in the vasculature. Cardiovascular disease stems from endothelial cell dysfunction and reduction in vascularization. Macrophages, prominent innate immune cells involved in orchestrating inflammation and wound healing, have a significant influence on vascularization. While much recent work has investigated the crosstalk between endothelial cells and macrophages, it is still not well defined. The interactions between the cell types are even less understood in specific disease states such as advanced age. Understanding how age influences macrophage/endothelial cell interaction is essential for understanding cardiovascular disease development in the elderly. In the polyethylene glycol (PEG)-based hydrogel system, we model the effects of age on vascularization by encapsulating endothelial cells, pericytes, and human donor macrophages. We created a biomaterial model system in which macrophages, either from young (65 years old) donors, interact with the modeled vasculature, termed microvessels. Confocal image analysis of vessel density, vessel length, and branch points were used to quantify microvessel growth depending on the age of the macrophage donor. Alongside this, soluble factor secretion and gene expression were evaluated using ELISA and NanoString to showcase biological mechanisms based on the age of each donor. Endothelial cells cultured with macrophages from old donors have reduced microvessel density. There also is reduced soluble factor secretion by the macrophages from old donors, which likely influenced microvessel growth. Altogether, we establish our PEG-based hydrogel vascular model as a system to evaluate patient-specific cell function as well as proposed mechanisms for how age influences microvessels.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号