...
首页> 外文期刊>The Journal of Clinical Investigation: The Official Journal of the American Society for Clinical Investigation >Smooth muscle cell-specific fibronectin-EDA mediates phenotypic switching and neointimal hyperplasia
【24h】

Smooth muscle cell-specific fibronectin-EDA mediates phenotypic switching and neointimal hyperplasia

机译:Smooth muscle cell-specific fibronectin-EDA mediates phenotypic switching and neointimal hyperplasia

获取原文
获取原文并翻译 | 示例

摘要

Fibronectin-splice variant containing extra domain A (Fn-EDA) is associated with smooth muscle cells (SMCs) following vascular injury. The role of SMC-derived Fn-EDA in SMC phenotypic switching or its implication in neointimal hyperplasia remains unclear. Herein, using human coronary artery sections with a bare metal stent, we demonstrate the expression of Fn-EDA in the vicinity of SMC-rich neointima and peri-strut areas. In mice, Fn-EDA colocalizes with SMCs in the neointima of injured carotid arteries and promotes neointima formation in the comorbid condition of hyperlipidemia by potentiating SMC proliferation and migration. No sex-based differences were observed. Mechanistic studies suggested that Fn-EDA mediates integrin- and TLR4-dependent proliferation and migration through activation of FAK/Src and Akt1/mTOR signaling, respectively. Specific deletion of Fn-EDA in SMCs, but not in endothelial cells, reduced intimal hyperplasia and suppressed the SMC synthetic phenotype concomitant with decreased Akt1/mTOR signaling. Targeting Fn-EDA in human aortic SMCs suppressed the synthetic phenotype and downregulated Akt1/mTOR signaling. These results reveal that SMC-derived Fn-EDA potentiates phenotypic switching in human and mouse aortic SMCs and neointimal hyperplasia in the mouse. We suggest that targeting Fn-EDA could be explored as a potential therapeutic strategy to reduce neointimal hyperplasia.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号