首页> 外文期刊>Journal of analytical & applied pyrolysis >Prediction of char production from slow pyrolysis of lignocellulosic biomass using multiple nonlinear regression and artificial neural network
【24h】

Prediction of char production from slow pyrolysis of lignocellulosic biomass using multiple nonlinear regression and artificial neural network

机译:基于多元非线性回归和人工神经网络的木质纤维素生物质慢速热解产炭预测

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Char produced from lignocellulosic biomass via slow pyrolysis have become one of the most feasible alternatives that can partially replace the utilisation of fossil fuels for energy production. In this study, the relationship between compositions of lignocellulosic biomass, operating conditions of slow pyrolysis, and characteristics of produced char have been analysed by using multiple nonlinear regression (MnLR) and artificial neural networks (ANN). Six input variables (temperature, solid residence time, production capacity, particle size, and fixed carbon and ash content) and five responses (char yield, and fixed carbon, volatile matter, ash content, HHV of produced char) were selected. A total of 57 literature references with 393-422 datasets were used to determine the correlation and coefficient of determination (R-2) between the input variables and responses. High correlation results (0.5) existed between pyrolysis temperature and char yield (-0.502) and volatile matter of produced char (-0.619), ash content of feedstock and fixed carbon (-0.685), ash content (0.871) and HHV (-0.571) of produced char. Whilst the quadratic model was selected for the regression model, then the model was further optimised by eliminating any terms with p-values greater than 0.05. The optimised MnLR model results showed a reasonable prediction ability of char yield (R-2 = 0.5579), fixed carbon (R-2 = 0.7763), volatile matter (R-2 = 0.5709), ash (R-2 = 0.8613), and HHV (R-2 = 0.5728). ANN model optimisation was carried out as the results showed "trainbr" training algorithm, 10 neurons in the hidden layer, and "tansig" and "purelin" transfer function in hidden and output layers, respectively. The optimised ANN models had higher accuracy than MnLR models with the R-2 greater than 0.75, including 0.785 for char yield, 0.855 for fixed carbon, 0.752 for volatile matter, 0.951 for ash and 0.784 for HHV, respectively. The trained models can be used to predict and optimise the char production from slow pyrolysis of biomass without expensive experiments.
机译:木质纤维素生物质通过缓慢热解生产的焦炭已成为最可行的替代品之一,可以部分替代化石燃料的能源生产。本研究采用多元非线性回归(MnLR)和人工神经网络(ANN)分析了木质纤维素生物质组成、慢热解操作条件与制炭特性之间的关系。选择6个输入变量(温度、固体停留时间、生产能力、粒径、固定碳和灰分含量)和5个响应(炭产量、固定碳、挥发分、灰分含量、产炭HHV)。共使用57篇文献参考文献和393-422个数据集来确定输入变量与响应之间的相关性和决定系数(R-2)。热解温度与产炭率(-0.502)和产炭挥发分(-0.619)、原料和固定炭灰分(-0.685)、灰分(0.871)和HHV(-0.571)之间存在较高的相关性(>0.5)。虽然为回归模型选择了二次模型,但通过消除 p 值大于 0.05 的任何项来进一步优化模型。优化后的MnLR模型结果对炭产率(R-2 = 0.5579)、固定碳(R-2 = 0.7763)、挥发分(R-2 = 0.5709)、灰分(R-2 = 0.8613)和HHV(R-2 = 0.5728)具有合理的预测能力。对ANN模型进行了优化,结果显示“trainbr”训练算法、隐藏层为10个神经元,隐藏层和输出层为“tansig”和“purelin”传递函数。优化后的ANN模型的精度高于MnLR模型,R-2大于0.75,其中炭产率为0.785,固定碳为0.855,挥发性物质为0.752,灰分为0.951,HHV为0.784。经过训练的模型可用于预测和优化生物质缓慢热解产生的焦炭,而无需昂贵的实验。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号