首页> 外文期刊>Clinical oncology >Deep Learning for Radiotherapy Outcome Prediction Using Dose Data-A Review
【24h】

Deep Learning for Radiotherapy Outcome Prediction Using Dose Data-A Review

机译:Deep Learning for Radiotherapy Outcome Prediction Using Dose Data-A Review

获取原文
获取原文并翻译 | 示例
       

摘要

Artificial intelligence, and in particular deep learning using convolutional neural networks, has been used extensively for image classification and segmentation, including on medical images for diagnosis and prognosis prediction. Use in radiotherapy prognostic modelling is still limited, however, especially as applied to toxicity and tumour response prediction from radiation dose distributions. We review and summarise studies that applied deep learning to radiotherapy dose data, in particular studies that utilised full three-dimensional dose distributions. Ten papers have reported on deep learning models for outcome prediction utilising spatial dose information, whereas four studies used reduced dimensionality (dose volume histogram) information for prediction. Many of these studies suffer from the same issues that plagued early normal tissue complication probability modelling, including small, single-institutional patient cohorts, lack of external validation, poor data and model reporting, use of late toxicity data without taking time-to-event into account, and nearly exclusive focus on clinician reported complications. They demonstrate, however, how radiation dose, imaging and clinical data may be technically integrated in convolutional neural networks-based models; and some studies explore how deep learning may help better understand spatial variation in radiosensitivity. In general, there are a number of issues specific to the intersection of radiotherapy outcome modelling and deep learning, for example translation of model developments into treatment plan optimisation, which will require further combined effort from the radiation oncology and artificial intelligence communities. (c) 2021 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号