...
首页> 外文期刊>Applied and Environmental Microbiology >A Framework for the Selection of Plant Growth-Promoting Rhizobacteria Based on Bacterial Competence Mechanisms
【24h】

A Framework for the Selection of Plant Growth-Promoting Rhizobacteria Based on Bacterial Competence Mechanisms

机译:A Framework for the Selection of Plant Growth-Promoting Rhizobacteria Based on Bacterial Competence Mechanisms

获取原文
获取原文并翻译 | 示例

摘要

The use of plant growth-promoting rhizobacteria (PGPR) is increasingly meaningful for the development of more environmentally friendly agricultural practices. However, often the PGPR strains selected in the laboratory fail to confer the expected beneficial effects when evaluated in plant experiments. Insufficient rhizosphere colonization is pointed out as one of the causes. With the aim of minimizing this inconsistency, we propose that besides studying plant growth promotion traits (PGP), the screening strategy should include evaluation of the microbial phenotypes required for colonization and persistence. As a model, we carried out this strategy in three Rhizobium sp. strains that showed phosphorus solubilization ability and production of siderophores. All strains displayed colonization phenotypes like surface spreading, resistance to hydrogen peroxide, and formed biofilms. Regarding their ability to persist, biofilm formation was observed to be influenced by pH and the phosphorus nutrient provided in the growth media. Differences in the competence of the strains to use several carbon substrates were also detected. As part of our framework, we compared the phenotypic characteristics of the strains in a quantitative manner. The data analysis was integrated using a multicriteria decision analysis (MCDA). All our results were scored, weighted, and grouped as relevant for PGP, colonization, or persistence. MCDA demonstrated that, when the phenotypes related to PGP and colonization are weighted over those for persistence, strain B02 performs better than the other two Rhizobium sp. strains. The use of our framework could assist the selection of more competent strains to be tested in greenhouse and field trials.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号