...
首页> 外文期刊>Optical and Quantum Electronics >Design and simulation of all-optical majority gates using fluid infiltration approach in photonic crystal slab
【24h】

Design and simulation of all-optical majority gates using fluid infiltration approach in photonic crystal slab

机译:Design and simulation of all-optical majority gates using fluid infiltration approach in photonic crystal slab

获取原文
获取原文并翻译 | 示例

摘要

With the growth of technology and the need to integrate optical devices, photonic crystals (PhCs) will have great potential in designing and fabricating programmable photonic integrated circuits (PICs). This paper proposes two all-optical majority gates using the fluid infiltration approach in a PhC slab, which aims to design logic functions. Numerical results using the well-known plane wave expansion method show that the proposed fundamental PhC slab has three photonic band gaps (PBGs) in TE mode. The most important is in the wavelength range of 1.516 mu m <= lambda <= 1.743 mu m, located in the attractive telecom C-band range. The results of light propagation inside the proposed gates using the finite-difference time-domain (FDTD) method reveal that both gates have a standard threshold of less than 0.28 for the logic zero and more than 0.35 for the logic one. The first and second proposed majority gates also have delays of 680 fs and 610 fs, respectively. One of the advantages of using the fluid infiltration approach is that there is no need to change the geometric dimensions of the structure for the desired application. That goal can be achieved only by replacing the fluid with another one. The proposed designs can be used as basic logic gates in the design of PICs.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号