首页> 外文期刊>Shape memory and superelasticity >Thin-Film Superelastic Alloys for Stretchable Electronics
【24h】

Thin-Film Superelastic Alloys for Stretchable Electronics

机译:Thin-Film Superelastic Alloys for Stretchable Electronics

获取原文
获取原文并翻译 | 示例
           

摘要

Conductive serpentine interconnects comprise fundamental building blocks (e.g., electrodes, antennas, wires) of many stretchable electronic systems. Here we present the first numerical and experimental studies of freestanding thin-film TiNiCuCo superelastic alloys for stretchable interconnects. The electrical resistivity of the austenite phase of a Ti53.3Ni30.9Cu12.9Co2.9 thin-film at room temperature was measured to be 5.43×10-7 Ω m, which is larger than reported measurements for copper thin-films (1.87×10-8 Ω m). Structuring the superelastic conductor to limit localized strain using a serpentine geometry led to freestanding interconnects that could reach maximum serpentine elongations of up to 153%. Finite element analysis (FEA) simulations predicted that superelastic serpentine interconnects can achieve significantly larger (~5X–7X) elastic elongations than copper for the same serpentine geometry. FEA predictions for stress distribution along the TiNiCuCo serpentine interconnect were experimentally verified by infrared imaging and tensile testing experiments. The superior mechanical advantages of TiNiCuCo were paired with the high electronic conductivity of copper, to create Cu/TiNiCuCo/Cu serpentine composites that were demonstrated to serve as freestanding electrical interconnects between two LEDs. The results presented in this manuscript demonstrate that thin-film superelastic alloys are a promising material class to improve the performance of conductors in stretchable and flexible electronics.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号