首页> 外文期刊>Advanced energy materials >Exploring the Nanoscale Origin of Performance Enhancement in Li_(1.1)Ni_(0.35)Mn_(0.55)O_2 Batteries Due to Chemical Doping
【24h】

Exploring the Nanoscale Origin of Performance Enhancement in Li_(1.1)Ni_(0.35)Mn_(0.55)O_2 Batteries Due to Chemical Doping

机译:探索化学掺杂导致Li_(1.1)Ni_(0.35)Mn_(0.55)O_2电池性能增强的纳米级起源

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Despite significant potential as energy storage materials for electric vehiclesdue to their combination of high energy density per unit cost and reducedenvironmental and ethical concerns, Co-free lithium ion batteries based on layeredMn oxides presently lack the longevity and stability of their Co-containingcounterparts. Here, a reduction in this performance gap is demonstrated viachemical doping, with Li_(1.1)Ni_(0.35)Mn_(0.54)Al_(0.01)O_2 achieving an initial dischargecapacity of 159 mAhg~(?1) at C/3 rate and a corresponding capacity retentionof 94.3 after 150 cycles. The nanoscale origins of this improvement aresubsequently explored through a combination of advanced diffraction, spectroscopy,and electron microscopy techniques, finding that optimized dopingprofiles lead to an improved structural and chemical compatibility between thetwo constituent sub-phases that characterize the layered Mn oxide system,resulting in the formation of unobstructed lithium ion pathways betweenthem. A structural stabilization effect of the host compound is also directlyobserved near the surface using aberration corrected scanning transmissionelectron microscopy and integrated differential phase contrast imaging.
机译:尽管基于层状锰氧化物的无共锂离子电池具有巨大的潜力,因为它们结合了单位成本的高能量密度以及减少的环境和伦理问题,但目前缺乏含钴锂离子电池的寿命和稳定性。在这里,通过化学掺杂证明了这种性能差距的缩小,Li_(1.1)Ni_(0.35)Mn_(0.54)Al_(0.01)O_2在C/3倍率下实现了159 mAhg~(?1)的初始放电容量,并且在150次循环后实现了94.3%的容量保持率。随后通过先进的衍射、光谱学和电子显微镜技术的结合来探索这种改进的纳米级起源,发现优化的掺杂曲线导致表征层状氧化锰系统的两个组成子相之间的结构和化学相容性得到改善,从而在它们之间形成畅通无阻的锂离子通路。使用像差校正扫描透射电子显微镜和集成差分相差成像,还可以在表面附近直接观察到主体化合物的结构稳定效应。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号