首页> 外文期刊>CERAMICS INTERNATIONAL >Phase transformation of nonstoichiometric cubic tungsten carbide on the surface of carbon nanotubes during high-temperature annealing of aluminum matrix composites
【24h】

Phase transformation of nonstoichiometric cubic tungsten carbide on the surface of carbon nanotubes during high-temperature annealing of aluminum matrix composites

机译:铝基复合材料高温退火过程中碳纳米管表面非化学计量立方碳化钨的相变

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

? 2022 Elsevier Ltd and Techna Group S.r.l.In this work, metal matrix composites based on 5049 aluminum alloy reinforced with multi-walled carbon nanotubes (CNTs) coated with nonstoichiometric cubic tungsten carbide were obtained by powder metallurgy. For the first time for this system, high-temperature annealing of the synthesized composites at 500–600 °C for 0.5 h was carried out. Effect of the annealing on the evolution of the structural-phase composition and the change in the microhardness and Young's modulus of the bulk composite was studied. Characterization of the structure shows that despite the growth of the matrix grains, the structural heterogeneity inherent for composites in the as-synthesized state is retained after heat treatment. Along with coarse grains, fine grains still remain, which indicates an increased resistance to recrystallization of the composite even at a temperature of ~0.9Tm. XRD analysis shows that annealing at temperatures above 525 °C leads to a solid-state interfacial reaction of the ceramic coating on the CNTs surface with the matrix material, resulting in the in-situ formation of the WAl12 intermetallic compound around the reinforcing particles and Al4C3 nanorods. At the same time, the structural integrity of the CNTs is preserved. An increase in the annealing temperature contributed to an increase in the intensity of phase transformations and an increase in the fraction of the in-situ phases. The microhardness and Young's modulus of the composites decreased by ~20 and ~27, respectively. Nevertheless, despite the increase in the grain size, the level of these properties remained quite high and equal to 141 HV and 80 GPa, correspondingly, due to the formation of a larger fraction of the in-situ WAl12 and Al4C3 phases. The obtained results are applicable for varying the mechanical properties of the composite by controlling the degree of in-situ reaction between the matrix alloy and the ceramic coating on the CNTs.
机译:?2022 Elsevier Ltd 和 Techna Group S.r.l.In 这项工作,通过粉末冶金获得了基于5049铝合金的金属基复合材料,该复合材料由涂覆非化学计量立方碳化钨的多壁碳纳米管(CNTs)增强。该系统首次在500–600°C下对合成的复合材料进行了0.5 h的高温退火。研究了退火对本体复合材料结构相组成演变以及显微硬度和杨氏模量变化的影响。结构表征表明,尽管基体晶粒生长,但复合材料在合成状态下固有的结构非均质性在热处理后仍保留。除了粗晶粒外,细晶粒仍然存在,这表明即使在~0.9Tm的温度下,复合材料的再结晶抵抗力也有所增加。XRD分析表明,在525 °C以上的温度下退火会导致CNTs表面的陶瓷涂层与基体材料发生固相反界面反应,从而在增强颗粒和Al4C3纳米棒周围原位形成WAl12金属间化合物。同时,保持了碳纳米管的结构完整性。退火温度的升高导致相变强度的增加和原位相比例的增加。复合材料的显微硬度和杨氏模量分别降低了~20%和~27%。然而,尽管晶粒尺寸有所增加,但这些特性的水平仍然相当高,相应地等于 141 HV 和 80 GPa,这是由于原位 WAl12 和 Al4C3 相的形成。所得结果可用于通过控制基体合金与碳纳米管上陶瓷涂层之间的原位反应程度来改变复合材料的力学性能。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号