首页> 外文期刊>Geotextiles and geomembranes >Artificial intelligence algorithms for predicting peak shear strength of clayey soil-geomembrane interfaces and experimental validation
【24h】

Artificial intelligence algorithms for predicting peak shear strength of clayey soil-geomembrane interfaces and experimental validation

机译:Artificial intelligence algorithms for predicting peak shear strength of clayey soil-geomembrane interfaces and experimental validation

获取原文
获取原文并翻译 | 示例
           

摘要

The peak shear strength of clayey soil-geomembrane interfaces is a vital parameter for the design of relevant engineering infrastructure. However, due to the large number of influence factors and the complex action mechanism, accurate prediction of the peak shear strength for clayey soil-geomembrane interfaces is always a challenge. In this paper, a machine learning model was established by combining Mind Evolutionary Algorithm (MEA) and the ensemble algorithm of Adaptive Boosting Algorithm (ADA)-Back Propagation Artificial Neural Network (BPANN) to predict the peak shear strength of clayey soil-geomembrane interfaces based on the results of 623 laboratory interface direct shear experiments. By comparing with the conventional machine learning algorithms, including Particle Swarm Optimisation Algorithm (PSO) and Genetic Algorithm (GA) tuned ADA-BPANN, MEA tuned Support Vector Machine (SVM) and Random Forest (RF), the superior performance of MEA tuned ADA-BPANN has been validated, with higher predicting precision, shorter training time, and the avoidance of local optimum and overfitting. By adopting the proposed novel model, sensitivity analysis was carried out, which indicates that normal pressure has the largest influence on the peak shear strength, followed by geomembrane roughness. Furthermore, an analytical equation was proposed to assess the peak shear strength that allows the usage of machine learning skills for the practitioners with limited machine learning knowledge. The present research highlights the potential of the MEA tuned ADA-BPANN model as a useful tool to assist in preciously estimating the peak shear strength of clayey soil-geomembrane interfaces, which can provide benefits for the design of relevant engineering applications.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号