...
首页> 外文期刊>Mathematical Problems in Engineering: Theory, Methods and Applications >Nonlinear Analysis Method of High-Strength Steel Based on Local Buckling Fiber Hinge
【24h】

Nonlinear Analysis Method of High-Strength Steel Based on Local Buckling Fiber Hinge

机译:Nonlinear Analysis Method of High-Strength Steel Based on Local Buckling Fiber Hinge

获取原文
获取原文并翻译 | 示例

摘要

Based on the analysis and summary of the research and application status of domestic and foreign high-strength steel local buckling fiber hinged rod stability and ordinary steel local buckling fiber hinged rod stability control, this paper proposes a fiber hinged rod suitable for spatial structures subject to local buckling. The new type is high-strength steel composite local buckling fiber hinged pressure rod. The influence of related parameters in the dislocation string model and the dislocation couple model on the ultrasonic nonlinear parameters is deeply analyzed. And, from the perspective of contact nonlinear acoustics, the mechanism of the ultrasonic nonlinear response of the crack is analyzed, and the finite element software ABAQUS is used to simulate it. The relationship between the nonlinear parameter and the internal crack shape of the material is simulated and analyzed, which proves the nonlinearity. A series of nonlinear ultrasonic testing was performed on three groups of FV520B high-strength steel fatigue specimens using a nonlinear testing system. Analyzing the results, it is found that the material has a good ultrasonic nonlinear cumulative effect, and the microcracks have a greater impact on the ultrasonic nonlinear response. The beta-N curves under three sets of fatigue tests are obtained. The results show that the nonlinear parameters are very sensitive to the fatigue damage of FV520B high-strength steel, and the ultrasonic nonlinear parameters generally increase with the increase in the number of fatigue cycles.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号