首页> 外文期刊>Korea-Australia Rheology Journal >Coagulation kinetics of round-sided disk particles under simple shear flow
【24h】

Coagulation kinetics of round-sided disk particles under simple shear flow

机译:Coagulation kinetics of round-sided disk particles under simple shear flow

获取原文
获取原文并翻译 | 示例
           

摘要

In this study a theoretical study is carried out on the binary collision of round-sided disks (RSD) suspended in a Newtonian fluid under a simple shear flow. RSD is composed of a disk part and a half-torus part which circumscribes the side of the disk. The diameter of the disk is fixed at 2 mu m while the thickness and the half-torus size are varied so that the aspect ratio varies from 0.13 to 0.288. The liquid viscosity is changed from 0.01 to 1 Pa center dot s. The hydrodynamic force and van der Waals force with the Hamaker constant of 1.06 x 10(-20)J are considered in tracking the position and the orientation of each particle. The Brownian motion is considered to be negligible. The collision of two particles initially separated by sufficiently a long distance is considered and the kinetic constant of coagulation is obtained by considering the presence of collision, the orientations of two particles and the flux of liquid flow. The result shows that the kinetic constant of coagulation is reduced to approximately 1/4 of the kinetic constant of non-interacting particles by the hydrodynamic interaction when the viscosity is 1 Pa center dot s. As collision modes, side-side and side-edge are considered. Side-side mode is found to be the dominant mode of collision for differing aspect ratio and differing viscosity of the liquid. The dominance of the side-side collision mode implies the formation of two-dimensional flocs in the shear flow.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号