首页> 外文期刊>Molecular biology and evolution >Recombining Your Way Out of Trouble: The Genetic Architecture of Hybrid Fitness under Environmental Stress
【24h】

Recombining Your Way Out of Trouble: The Genetic Architecture of Hybrid Fitness under Environmental Stress

机译:重新组合你的出路:环境压力下混合健身的遗传结构

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Hybridization between species can either promote or impede adaptation. But we know very little about the genetic basis of hybrid fitness, especially in nondomesticated organisms, and when populations are facing environmental stress. We made genetically variable F2 hybrid populations from two divergent Saccharomyces yeast species. We exposed populations to ten toxins and sequenced the most resilient hybrids on low coverage using ddRADseq to investigate four aspects of their genomes: 1) hybridity, 2) interspecific heterozygosity, 3) epistasis (positive or negative associations between nonhomologous chromosomes), and 4) ploidy. We used linear mixed-effect models and simulations to measure to which extent hybrid genome composition was contingent on the environment. Genomes grown in different environments varied in every aspect of hybridness measured, revealing strong genotype-environment interactions. We also found selection against heterozygosity or directional selection for one of the parental alleles, with larger fitness of genomes carrying more homozygous allelic combinations in an otherwise hybrid genomic background. In addition, individual chromosomes and chromosomal interactions showed significant species biases and pervasive aneuploidies. Against our expectations, we observed multiple beneficial, opposite-species chromosome associations, confirmed by epistasis- and selection-free computer simulations, which is surprising given the large divergence of parental genomes (similar to 15). Together, these results suggest that successful, stress-resilient hybrid genomes can be assembled from the best features of both parents without paying high costs of negative epistasis. This illustrates the importance of measuring genetic trait architecture in an environmental context when determining the evolutionary potential of genetically diverse hybrid populations.
机译:物种之间的杂交可以促进或阻碍适应。但我们对杂交适应性的遗传基础知之甚少,特别是在非驯化生物中,以及当种群面临环境压力时。我们从两种不同的酵母菌种中制作了遗传可变的 F2 杂交种群。我们将种群暴露于十种毒素中,并使用ddRADseq对低覆盖率下最具弹性的杂交种进行测序,以研究其基因组的四个方面:1)杂交性,2)种间杂合性,3)上位性(非同源染色体之间的正或负关联),以及4)倍性。我们使用线性混合效应模型和模拟来测量杂交基因组组成在多大程度上取决于环境。在不同环境中生长的基因组在测量杂交性的各个方面都各不相同,揭示了强烈的基因型-环境相互作用。我们还发现,对其中一个亲本等位基因的杂合性或定向选择进行了选择,在其他杂交基因组背景中,基因组的适应度更大,携带更多的纯合等位基因组合。此外,个体染色体和染色体相互作用表现出显著的物种偏倚和普遍的非整倍体。出乎我们的意料,我们观察到了多个有益的、异种的染色体关联,这些关联得到了无上位和无选择的计算机模拟的证实,考虑到亲本基因组的巨大差异(类似于15%),这是令人惊讶的。总之,这些结果表明,成功的、抗应激的杂交基因组可以从父母双方的最佳特征中组装而成,而无需支付高昂的负上位成本。这说明了在确定遗传多样性杂交种群的进化潜力时,在环境背景下测量遗传性状结构的重要性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号