首页> 外文期刊>International journal of heat and fluid flow >High-fidelity computational study of roughness effects on high pressure turbine performance and heat transfer
【24h】

High-fidelity computational study of roughness effects on high pressure turbine performance and heat transfer

机译:High-fidelity computational study of roughness effects on high pressure turbine performance and heat transfer

获取原文
获取原文并翻译 | 示例
       

摘要

While blade surface roughness arising from in-service wear and/or the manufacturing process greatly affects aero-thermal performance, the detailed underlying physical mechanisms remain far from fully understood. In this study, a series of highly-resolved Large-Eddy Simulations of compressible flow past a high-pressure turbine vane with systematically varied levels of blade surface roughness have been performed, along with a smooth-blade simulation at matched flow conditions for comparison. Three non-dimensional roughness amplitudes have been investigated, namely, k(s)/c = {1.0, 2.0, 3.0} x 10(-3), where k is an equivalent value of Nikuradse's sandgrain roughness for an irregular, multi-scale near-Gaussian height distribution, and c is the axial blade chord. All simulations have been performed at an axial chord Reynolds number of 0.59 x 10(6) and a Mach number of 0.9, based on the exit conditions of the reference smooth vane, and with synthetic inflow turbulence to mimic unsteady, three-dimensional disturbances from an upstream combustion chamber. The present investigation highlights the profound impact that blade surface roughness can have upon boundarylayer transition mechanisms, wall shear stress and blade surface heat flux, as well as the levels of turbulence kinetic energy and total pressure losses incurred in the wake. While blade surface roughness leads to major aero-thermal differences between the suction-side of the smooth and rough vanes, the pressure-side surface remains relatively unaffected - even for the largest roughness amplitude investigated here.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号