...
首页> 外文期刊>Materials Chemistry Frontiers >Phase control in solution deposited tin monosulfide thin films: the role of Pb2+ cations
【24h】

Phase control in solution deposited tin monosulfide thin films: the role of Pb2+ cations

机译:Phase control in solution deposited tin monosulfide thin films: the role of Pb2+ cations

获取原文
获取原文并翻译 | 示例
           

摘要

A “single pot” solution deposition methodology was employed to fabricate phase-controlled lead-doped tin monosulfide thin films. Different Pb2+:SnS2+ cation ratios were used for preparing SnS:Pb thin films on GaAs and FTO substrates. The compactness, phase purity, and growth rate of π-SnS were shown to improve by adding Pb2+ cations to the deposition solution. A thin PbS intermediate layer was spontaneously formed between the GaAs substrates and π-SnS thin films. High resolution X-ray diffraction showed that Pb is distributed as a solid solution in the π-SnS lattice. X-ray photoelectron spectroscopy indicated that the π-SnS film concentrations contain up to 3% of Pb, and that increasing the Pb content gives rise to increased Sn–S bonding strength and improved resistance to oxidation. The introduction of Pb to the solution used for deposition of SnS thin films (Pb-doping) slightly decreased the band gap and enhanced the electrical characteristics of the π-SnS films obtained, as demonstrated by Kelvin probe force microscopy and optical spectroscopy in the visible range. Moreover, deposition under conditions known to encourage formation of the orthorhombic α-SnS phase led to a gradual transition from the α-SnS phase to the π-SnS phase with increasing concentrations of Pb2+. These results demonstrate a straightforward method for achieving phase control in SnS thin films while enhancing their physical properties for optoelectronic applications such as thin film solar cells. The results were corroborated using density functional theory simulations of substitutional Pb defects in SnS phases, pointing out the concentration of Pb substitutionals required to stabilize π-SnS, which is in agreement with experimental results.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号