首页> 外文期刊>Advanced functional materials >Tailoring Disordered/Ordered Phases to Revisit the Degradation Mechanism of High-Voltage LiNi_(0.5)Mn_(1.5)O_4 Spinel Cathode Materials
【24h】

Tailoring Disordered/Ordered Phases to Revisit the Degradation Mechanism of High-Voltage LiNi_(0.5)Mn_(1.5)O_4 Spinel Cathode Materials

机译:定制无序/有序相以重新审视高压LiNi_(0.5)Mn_(1.5)O_4尖晶石正极材料的降解机理

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In the spinel oxide cathode family, LiNi0.5Mn1.5O4 (LNMO) shows a high operating voltage (approximate to 4.7 V vs Li/Li+) and excellent Li-ion mobility with stable 3D conducting channels. Ni/Mn cation disordered and ordered phases usually coexist in LNMO materials, and they have distinct structural and electrochemical properties, resulting in different battery performances for LNMO materials with different phase compositions. Identifying the correlation between phase compositions and electrochemical properties is of significance to the improvement of battery performance and understanding of degradation mechanisms. Herein, the disordered/ordered phase compositions in LNMO materials are tailored by post-annealing strategies and their impacts on electrochemical performance and degradation mechanisms from the surface to the bulk are systematically investigated. The ordered phase increases rapidly as Mn3+ is oxidized to Mn4+ through a post-annealing process. LNMO with an intermediate fraction of disordered and ordered phases gives rise to improved cycling stability. This article further reports that a high ordered phase fraction can preferentially protect Ni from dissolution during cycling. However, these results suggest that the transition metal dissolution and surface structural change of LNMO do not exhibit a direct correlation with cycling stability. These results indicate the capacity fading mainly correlates with the bulk structural distortion, leading to decreased Li-ion kinetics.
机译:在尖晶石氧化物阴极系列中,LiNi0.5Mn1.5O4 (LNMO) 具有较高的工作电压(接近 4.7 V vs Li/Li+)和出色的锂离子迁移率,具有稳定的 3D 导电通道。Ni/Mn阳离子无序相和有序相通常在LNMO材料中共存,它们具有不同的结构和电化学性质,导致不同相组成的LNMO材料具有不同的电池性能。识别相组成与电化学性质之间的相关性对于提高电池性能和理解降解机理具有重要意义。本文通过后退火策略对LNMO材料中的无序/有序相组成进行了调整,并系统地研究了它们对电化学性能的影响以及从表面到本体的降解机理。当 Mn3+ 通过后退火过程氧化为 Mn4+ 时,有序相迅速增加。LNMO具有无序和有序相的中间部分,可提高循环稳定性。本文进一步报道了高有序相分数可以优先保护Ni在循环过程中不溶解。然而,这些结果表明,LNMO的过渡金属溶解和表面结构变化与循环稳定性没有直接关系。这些结果表明,容量衰减主要与体结构畸变相关,导致锂离子动力学降低。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号