...
【24h】

Spatial asymmetries in cat retinal ganglion cell responses

机译:Spatial asymmetries in cat retinal ganglion cell responses

获取原文
获取原文并翻译 | 示例
           

摘要

Enroth-Cugell and Robson (1966) first proposed a classification of retinal ganglion cells into X cells, which exhibit approximate linear spatial summation and largely sustained responses, and Y cells, which exhibit nonlinearities and transient responses. Gaudiano (1992a, 1992b, 1994) has suggested that the dominant characteristics of both X and Y cells can be simulated with a single model simply by changing receptive field profiles to match those of the anatomical counterparts of X and Y cells. He also proposed that a significant component of the spatial nonlinearities observed in Y (and sometimes X) cells can result from photoreceptor nonlinearities coupled with push-pull bipolar connections. Specifically, an asymmetry was predicted in the ganglion cell response to rectangular gratings presented at different locations in the receptive field under two conditions: introduction/withdrawal (on-off) or contrast reversal. When measuring the response to these patterns as a function of spatial phase, the standard difference-of-Gaussians model predicts symmetrical responses about the receptive field center, while the push-pull model predicts slight but significant asymmetry in the on-off case only. To test this hypothesis, we have recorded ganglion cell responses from the optic tract fibers of anesthetized cat. The mean and standard deviations of responses to on-off and contrast-reversed patterns were compared. We found that all but one of the cells that yielded statistically significant data confirmed the hypothesis. These results largely support the theoretical prediction. [References: 26]

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号