首页> 外文期刊>The Journal of Chemical Physics >On the nature of the Schottky anomaly in endohedral water
【24h】

On the nature of the Schottky anomaly in endohedral water

机译:On the nature of the Schottky anomaly in endohedral water

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, we study the heat capacity contribution of a rigid water molecule encapsulated in C60 by performing six-dimensional eigenstate calculations with the inclusion of its quantized rotational and translational degrees of freedom. Two confinement model potentials are considered: in the first, confinement is described using distributed pairwise Lennard-Jones interactions, while in the second, the water molecule is trapped within an eccentric but isotropic 3D harmonic effective confinement potential [Wespiser et al., J. Chem. Phys. 156, 074304 (2022)]. Contributions to the heat capacity from both the ortho and para nuclear spin isomers of water are considered to enable the effects of their interconversion to be assessed. By including a symmetry-breaking quadrupolar potential energy term in the Hamiltonian, we can reproduce the experimentally observed Schottky anomaly at ∼2 K [Suzuki et al., J. Phys. Chem. Lett. 10, 1306 (2019)]. Furthermore, our calculations predict a second Schottky anomaly at ∼0.1 K resulting from the H configuration, a different orientational arrangement of the fullerene cages in crystalline solid C60. Contributions from the H configuration to CV also explain the second peak observed at ∼7 K in the experimentally measured heat capacity.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号