首页> 外文期刊>The Journal of Chemical Physics >When does Wenzel's extension of Young's equation for the contact angle of droplets apply? A density functional study
【24h】

When does Wenzel's extension of Young's equation for the contact angle of droplets apply? A density functional study

机译:温泽尔对液滴接触角的杨氏方程的扩展何时适用?密度泛函研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The contact angle of a liquid droplet on a surface under partial wetting conditions differs for a nanoscopically rough or periodically corrugated surface from its value for a perfectly flat surface. Wenzel's relation attributes this difference simply to the geometric magnification of the surface area (by a factor r(w)), but the validity of this idea is controversial. We elucidate this problem by model calculations for a sinusoidal corrugation of the form z(wall)(y) = Delta cos(2 pi y/lambda), for a potential of short range sigma (w) acting from the wall on the fluid particles. When the vapor phase is an ideal gas, the change in the wall-vapor surface tension can be computed exactly, and corrections to Wenzel's equation are typically of the order sigma (w)Delta/lambda (2). For fixed r(w) and fixed sigma (w), the approach to Wenzel's result with increasing lambda may be nonmonotonic and this limit often is only reached for lambda/sigma (w) > 30. For a non-additive binary mixture, density functional theory is used to work out the density profiles of both coexisting phases for planar and corrugated walls as well as the corresponding surface tensions. Again, deviations from Wenzel's results of similar magnitude as in the above ideal gas case are predicted. Finally, a crudely simplified description based on the interface Hamiltonian concept is used to interpret the corresponding simulation results along similar lines. Wenzel's approach is found to generally hold when lambda/sigma (w) >> 1 and Delta/lambda < 1 and under conditions avoiding proximity of wetting or filling transitions.
机译:在部分润湿条件下,液滴在表面上的接触角对于纳米粗糙或周期性波纹表面与完全平坦表面的值不同。温泽尔的关系将这种差异简单地归因于表面积的几何放大倍率(乘以系数r(w)),但这个想法的有效性是有争议的。我们通过模型计算 z(wall)(y) = Delta cos(2 pi y/lambda) 形式的正弦波纹来阐明这个问题,以计算从壁面作用在流体颗粒上的短程 sigma (w) 电位。当气相为理想气体时,可以精确计算壁面-蒸汽表面张力的变化,对 Wenzel 方程的修正通常为 sigma (w)Delta/lambda (2) 的量级。对于固定 r(w) 和固定 sigma (w),随着 lambda 的增加,Wenzel 结果的求解可能是非单调的,并且通常只有 lambda/sigma (w) > 30 时才能达到此极限。对于非加性二元混合物,密度泛函理论用于计算平面壁和波纹壁的共存相的密度分布以及相应的表面张力。同样,预测了与上述理想气体情况中相似的 Wenzel 结果的偏差。最后,基于界面哈密顿量概念的粗略简化描述,沿着相似的思路解释相应的仿真结果。当 lambda/sigma (w) >> 1 和 Delta/lambda < 1 时,在避免接近润湿或填充过渡的条件下,Wenzel 的方法通常成立。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号