首页> 外文期刊>Aerospace science and technology >Uncertainty quantification study of the aerodynamic performance of high-altitude propellers
【24h】

Uncertainty quantification study of the aerodynamic performance of high-altitude propellers

机译:Uncertainty quantification study of the aerodynamic performance of high-altitude propellers

获取原文
获取原文并翻译 | 示例
       

摘要

Performance evaluations for propellers operating at high altitudes are subject to increased uncertainty due to scarce experimental or flight data and difficulties in modeling low Reynolds number flows. For this reason, the Polynomial Chaos Expansion (PCE) method is used in this paper to assess the performance uncertainty of propellers operating at high altitudes. Aleatoric (i.e. linked to the geometry or operating conditions) and epistemic (i.e. linked to the mathematical model describing the flow) uncertainty variables are included in this study to estimate the total uncertainty related to performance predictions made by two physical models, namely 3D RANS with the use of γ-Re_θ transition model and Blade Element Momentum Theory (BEMT). In order to validate the proposed method, multipoint uncertainty quantification (UQ) studies are performed for two benchmark propeller geometries under various operating conditions for which experimental data are available. The UQ method is further illustrated on a propeller operating at high altitude. The efficacy of UQ with Computational Fluid Dynamics (CFD) and BEMT is compared and the most influential uncertain variables are found using Sobol's total order indices. As a result of the CFD-based uncertainty quantification studies, two major uncertain variables are identified, providing a direction for more computationally affordable UQ studies.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号