...
首页> 外文期刊>Applied and Environmental Microbiology >Targeted Gene Insertion and Replacement in the Basidiomycete Ganoderma lucidum by Inactivation of Nonhomologous End Joining Using CRISPR/Cas9
【24h】

Targeted Gene Insertion and Replacement in the Basidiomycete Ganoderma lucidum by Inactivation of Nonhomologous End Joining Using CRISPR/Cas9

机译:Targeted Gene Insertion and Replacement in the Basidiomycete Ganoderma lucidum by Inactivation of Nonhomologous End Joining Using CRISPR/Cas9

获取原文
获取原文并翻译 | 示例

摘要

Targeted gene insertion or replacement is a promising genome-editing tool for molecular breeding and gene engineering. Although CRISPR/Cas9 works well for gene disruption and deletion in Ganoderma lucidum, targeted gene insertion and replacement remain a serious challenge due to the low efficiency of homologous recombination (HR) in this species. In this work, we demonstrate that the DNA double-strand breaks induced by Cas9 were mainly repaired via the nonhomologous end joining (NHEJ) pathway, at a frequency of 96.7%. To establish an efficient target gene insertion and replacement tool in Ganoderma, we first inactivated the NHEJ pathway via disruption of the Ku70 gene (ku70) using a dual single guide RNA (sgRNA)-directed gene deletion method. Disruption of the ku70 gene significantly decreased NHEJ activity in G. lucidum. Moreover, ku70 disruption strains exhibited 96.3% and 93.1% frequencies of targeted gene insertion and replacement, respectively, when target DNA with the orotidine 59-monophosphate decarboxylase (ura3) gene and 1.5-kb homologous 59- and 39-flanking sequences was used as a donor template, compared to 3.3% and 0%, respectively, at these targeted sites for a control strain (Cas9 strain). Our results indicated that ku70 disruption strains were efficient recipients for targeted gene insertion and replacement. This tool will advance our understanding of functional genomics in G. lucidum.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号