首页> 外文期刊>Journal of the Indian Academy of Wood Science >Cold glow discharge nitrogen plasma treatment of banana and sisal fiber for mechanical and surface characterization improvement
【24h】

Cold glow discharge nitrogen plasma treatment of banana and sisal fiber for mechanical and surface characterization improvement

机译:Cold glow discharge nitrogen plasma treatment of banana and sisal fiber for mechanical and surface characterization improvement

获取原文
获取原文并翻译 | 示例
       

摘要

Natural fiber as an intriguing option for reinforcing polymeric matrices has sparked a rising interest in creating sustainable and environmentally friendly lightweight structures. Banana fiber is a derivation of the processing of the banana plant's pseudostem (Musasepientum). Agave sisalana is a rosette-forming succulent plant cultivated largely for the fibers derived from its leaves. Sisal fibers were low in compactness, widely available and ecologically benign despite issues including hydrophilicity and performance swings. The impacts of various plasma powers (80W and 120W) for 30 min on mechanical as well as surface characteristics of unidirectional banana and sisal fibers surface treated with cold glow discharge nitrogen plasma were explored in this research. As compared to an untreated banana-sisal fiber-reinforced epoxy laminate the banana-sisal fiber-reinforced epoxy composite (BSFREC) had nearly 69.91 percent higher interlaminar shear strength, 110.01 percent higher flexural strength, 36.95 percent higher larger elongation and 79.92 percent higher tensile strength characterizations. FTIR spectroscopy and XRD were used to compare the morphological aspects of cold glow discharge nitrogen plasma-treated banana/sisal fibers and pretreated banana/sisal fibers demonstrating an improvement in fiber surface structure and boosting their adhesion to matrices. After being surface-treated banana and sisal fibers might be used in industrial applications making them a highly appealing but viable resource that helps society achieve its goal of cultivating self-sustaining yet biodegradable natural resources.
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号