【24h】

Piezoelectric energy harvesting using macro fiber composite patches

机译:Piezoelectric energy harvesting using macro fiber composite patches

获取原文
获取原文并翻译 | 示例
           

摘要

Over the last decade, vibration energy harvesting has received substantial attention of many researchers. Piezoelectric materials are able to capture energy from ambient vibration and convert it into electricity which can be stored in batteries or utilized to power small electronic devices. In order to benefit from the 33-mode of the piezoelectric effect, interdigitated electrodes have been utilized in the design of macro fiber composites which are made of piezoelectric fibers of square cross sections embedded into an epoxy matrix material. This paper presents an analytical model of a macro fiber composite bimorph energy harvester using the 33-mode. The mixing rule is applied to determine the equivalent and homogenized properties of the macro fiber composite structures. The electromechanical properties of a representative volume element composed of piezoelectric fibers and an epoxy matrix between two successive interdigitated electrodes are coupled with the overall electro-elastodynamics of the harvester utilizing the Euler-Bernoulli theory. Macro fiber composite bimorph cantilevers with diverse widths are simulated for power generation when a resistive shunt loading is applied. Stress components in the Kapton layers, which are typically a part of any macro fiber composite patch, and in the bonding layers have been included in the model contrary to previously published studies. Variable tip mass, attached at the free end of the beam, is utilized in this paper to tune the resonance frequency of the harvester. The generated power at the fundamental short circuit and open circuit resonance frequencies of harvesters having three different widths is analyzed. It has been observed that higher electrical outputs are produced by the wider macro fiber composite bimorph using (M8528-P1 patches).

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号