首页> 外文期刊>Applied and Environmental Microbiology >Community Structure and Microbial Associations in Sediment-Free Methanotrophic Enrichment Cultures from a Marine Methane Seep
【24h】

Community Structure and Microbial Associations in Sediment-Free Methanotrophic Enrichment Cultures from a Marine Methane Seep

机译:海洋甲烷渗漏无沉积物产甲烷富集培养物中的群落结构和微生物关联

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Biological anaerobic oxidation of methane (AOM) coupled with sulfate reduction represents a large methane sink in global ocean sediments. Methane consumption is carried out by syntrophic archaeal-bacterial consortia and fuels a unique ecosystem, yet the interactions in these slow-growing syntrophic consortia and with other associated community members remain poorly understood. Syntrophic consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) consume large amounts of methane and serve as the foundational microorganisms in marine methane seeps. Despite their importance in the carbon cycle, research on the physiology of ANME-SRB consortia has been hampered by the slow growth and complex physicochemical environment the consortia inhabit. Here, we report successful sediment-free enrichment of ANME-SRB consortia from deep-sea methane seep sediments in the Santa Monica Basin, California. Anoxic Percoll density gradients and size-selective filtration were used to separate ANME-SRB consortia from sediment particles and single cells to accelerate the cultivation process. Over a 3-year period, a subset of the sediment-associated ANME and SRB lineages, predominantly comprised of ANME-2a/2b ("Candidatus Methanocomedenaceae") and their syntrophic bacterial partners, SEEP-SRB1/2, adapted and grew under defined laboratory conditions. Metagenome-assembled genomes from several enrichments revealed that ANME-2a, SEEP-SRB1, and Methanococcoides in different enrichments from the same inoculum represented distinct species, whereas other coenriched microorganisms were closely related at the species level. This suggests that ANME, SRB, and Methanococcoides are more genetically diverse than other members in methane seeps. Flow cytometry sorting and sequencing of cell aggregates revealed that Methanococcoides, Anaerolineales, and SEEP-SRB1 were overrepresented in multiple ANME-2a cell aggregates relative to the bulk metagenomes, suggesting they were physically associated and possibly interacting. Overall, this study represents a successful case of selective cultivation of anaerobic slow-growing microorganisms from sediments based on their physical characteristics, introducing new opportunities for detailed genomic, physiological, biochemical, and ecological analyses. IMPORTANCE Biological anaerobic oxidation of methane (AOM) coupled with sulfate reduction represents a large methane sink in global ocean sediments. Methane consumption is carried out by syntrophic archaeal-bacterial consortia and fuels a unique ecosystem, yet the interactions in these slow-growing syntrophic consortia and with other associated community members remain poorly understood. The significance of this study is the establishment of sediment-free enrichment cultures of anaerobic methanotrophic archaea and sulfate-reducing bacteria performing AOM with sulfate using selective cultivation approaches based on size, density, and metabolism. By reconstructing microbial genomes and analyzing community composition of the enrichment cultures and cell aggregates, we shed light on the diversity of microorganisms physically associated with AOM consortia beyond the core syntrophic partners. These enrichment cultures offer simplified model systems to extend our understanding of the diversity of microbial interactions within marine methane seeps.
机译:甲烷的生物厌氧氧化(AOM)与硫酸盐还原相结合,代表了全球海洋沉积物中的大量甲烷汇。甲烷消耗由同养古细菌联盟进行,并为独特的生态系统提供燃料,但这些增长缓慢的同养联盟以及其他相关群落成员的相互作用仍然知之甚少。厌氧甲烷营养古细菌 (ANME) 和硫酸盐还原菌 (SRB) 的合养联盟消耗大量甲烷,是海洋甲烷渗漏中的基础微生物。尽管它们在碳循环中很重要,但对ANME-SRB联盟生理学的研究一直受到联盟生长缓慢和复杂的物理化学环境的阻碍。在这里,我们报告了从加利福尼亚州圣莫尼卡盆地的深海甲烷渗漏沉积物中成功无沉积物富集ANME-SRB联盟。使用Anoxic Percoll密度梯度和大小选择性过滤将ANME-SRB联盟与沉积物颗粒和单细胞分离,以加速培养过程。在 3 年的时间里,沉积物相关的 ANME 和 SRB 谱系的一个子集,主要由 ANME-2a/2b(“甲烷粉刺假酵母菌科”)及其合成细菌伴侣 SEEP-SRB1/2 组成,在规定的实验室条件下适应和生长。来自多个富集的宏基因组组装基因组表明,来自同一接种物的不同富集的ANME-2a、SEEP-SRB1和甲烷球菌代表了不同的物种,而其他共富集的微生物在物种水平上密切相关。这表明ANME、SRB和甲烷球菌在遗传上比甲烷渗漏中的其他成员更具遗传多样性。流式细胞术对细胞聚集体进行分选和测序显示,甲烷球菌、厌氧菌和 SEEP-SRB1 在多个 ANME-2a 细胞聚集体中相对于块状宏基因组的过度表达,表明它们在物理上是相关的,并且可能相互作用。总体而言,本研究代表了基于其物理特性从沉积物中选择性培养厌氧缓慢生长微生物的成功案例,为详细的基因组、生理、生化和生态分析提供了新的机会。重要性 甲烷的生物厌氧氧化 (AOM) 与硫酸盐还原相结合,代表了全球海洋沉积物中的大量甲烷汇。甲烷消耗由同养古细菌联盟进行,并为独特的生态系统提供燃料,但这些增长缓慢的同养联盟以及其他相关群落成员的相互作用仍然知之甚少。本研究的意义在于建立厌氧甲烷营养古细菌和硫酸盐还原菌的无沉淀物富集培养物,使用基于大小、密度和代谢的选择性培养方法进行硫酸盐AOM。通过重建微生物基因组并分析富集培养物和细胞聚集体的群落组成,我们揭示了与核心合养伙伴之外的AOM联盟物理相关的微生物的多样性。这些富集培养物提供了简化的模型系统,以扩展我们对海洋甲烷渗漏中微生物相互作用多样性的理解。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号