首页> 外文期刊>Laser physics letters >Schrodinger cat state formation in small bosonic Josephson junctions at finite temperatures and dissipation
【24h】

Schrodinger cat state formation in small bosonic Josephson junctions at finite temperatures and dissipation

机译:有限温度和耗散下小玻色子约瑟夫森结中薛定谔猫态的形成

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In this work, we consider the feasibility of Schrodinger cat (SC) and N00N states formation by a convenient bosonic Josephson junction system in two-mode approximation. Starting with purely quantum description of two-mode Bose-Einstein condensate we investigate the effective potential approach that provides an accurate analytical description for the system with a large number of particles. We show that in the zero temperature limit SC states result from a quantum phase transition that occurs when the nonlinear strength becomes comparable with the Josephson coupling parameter. The Wigner function approach demonstrates the growth of the SC state halves separation and formation of N00N-like states (a Fock state superposition) with the particle number increase. We examine the possibility to attain the SC state at finite temperatures and a weak dissipation leading to appearing of some critical temperature; it defines the second-order phase transition from classical activation process to the SC state formation through the quantum tunneling phenomenon. Numerical estimations demonstrate that the critical temperature is sufficiently below the temperature of atomic condensation. The results obtained may be useful for experimental observation of SC states with small condensate Josephson junctions.
机译:在这项工作中,我们考虑了薛定谔猫(SC)和N00N态在双模近似中通过方便的玻色子约瑟夫森结系统形成的可行性。从双模玻色-爱因斯坦凝聚态的纯量子描述开始,我们研究了为具有大量粒子的系统提供准确解析的有效势方法。我们表明,在零温度极限下,SC态是由量子相变引起的,当非线性强度与约瑟夫森耦合参数相当时,就会发生量子相变。Wigner函数方法证明了随着粒子数量的增加,SC态的增长减半,分离和形成N00N样态(Fock态叠加)。我们研究了在有限温度下达到SC状态的可能性,并且由于出现一些临界温度而出现微弱的耗散;它通过量子隧穿现象定义了从经典活化过程到SC态形成的二阶相变。数值估计表明,临界温度足以低于原子凝聚温度。所获得的结果可能有助于实验观察具有小凝聚态约瑟夫森结的SC态。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号