首页> 外文期刊>Optical and Quantum Electronics >Synthesis and tuning the structural, morphological and dielectric characteristics of PVA-CMC-SiO2–Cr2O3 hybrid nanostructures for nanoelectronics devices
【24h】

Synthesis and tuning the structural, morphological and dielectric characteristics of PVA-CMC-SiO2–Cr2O3 hybrid nanostructures for nanoelectronics devices

机译:纳米电子器件中PVA-CMC-SiO2–Cr2O3杂化纳米结构的结构、形貌和介电特性的合成与调控

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Abstract The current study aims to process silicon dioxide (SiO2) and chromium trioxide (Cr2O3) nanostructures doped polyvinyl alcohol (PVA), and carboxymethyl cellulose (CMC) blend as promising nanostructures to apply for nanoelectronics devices and pressure sensors with low cost and excellent chemical and physical characteristics compared of other nanomaterials. Nanostructures of (PVA-CMC-SiO2–Cr2O3) were examined for their structural, morphological, and dielectric properties. Scanning electron microscope (SEM) images of (PVA-CMC-SiO2–Cr2O3) nanocomposites (NCs) reveal many aggregates or chunks that are homogenous and coherent on the top surface. When the proportion is (8 wt), optical microscope images reveal that inside the polymers, (SiO2–Cr2O3) nanoparticles build a continuous network once compared to pure (PVA-CMC) film. Fourier transform infrared ray (FTIR) indicated a shift in peak location and a peak shape and intensity modification. The electrical properties of alternating current demonstrate that the dielectric constant (ε′) and dielectric loss (ε″) of nanocomposites drop as the frequency of the applied electrical field increases but increases when the concentration of nanoparticles (NPs) increases. The dielectric constant and AC electrical conductivity (σa.c) of (PVA-CMC) blend enhanced by about 100 and 150, respectively, when the (SiO2–Cr2O3) content reached (8 wt) at a frequency (f = 100 Hz). The obtained results indicated that the doping (PVA-CMC) with (SiO2–Cr2O3) NPs improved the structural and AC electrical conductivity, which made the (PVA-CMC-SiO2–Cr2O3) nanostructures promising materials for various electrical nanodevices. Compared to existing pressure sensors, the (PVA-CMC-SiO2–Cr2O3) nanostructures demonstrated superior pressure sensitivity, great flexibility, and strong environmental resilience.
机译:摘要 本研究旨在将二氧化硅(SiO2)和三氧化铬(Cr2O3)纳米结构掺杂聚乙烯醇(PVA)和羧甲基纤维素(CMC)共混物加工为具有低成本、化学和物理特性优于其他纳米材料的纳米电子器件和压力传感器的纳米结构。研究了(PVA-CMC-SiO2–Cr2O3)纳米结构的结构、形貌和介电性能。(PVA-CMC-SiO2–Cr2O3)纳米复合材料(NCs)的扫描电子显微镜(SEM)图像揭示了顶面上许多均匀且相干的聚集体或块。当比例为(8wt%)时,光学显微镜图像显示,与纯(PVA-CMC)薄膜相比,聚合物内部的(SiO2-Cr2O3)纳米颗粒一次形成连续网络。傅里叶变换红外线(FTIR)表明峰位置发生了变化,峰形和强度发生了变化。交流电的电学性质表明,纳米复合材料的介电常数(ε′)和介电损耗(ε“)随着外加电场频率的增加而降低,而随着纳米颗粒(NPs)浓度的增加而增加。当(SiO2–Cr2O3)含量在一定频率(f = 100 Hz)下达到(8 wt%)时,(PVA-CMC)共混物的介电常数和交流电导率(σa.c)分别提高了约100%和150%。结果表明,(SiO2–Cr2O3) NPs的掺杂(PVA-CMC)改善了结构和交流电导率,使(PVA-CMC-SiO2–Cr2O3)纳米结构成为各种电纳米器件的有前途的材料。与现有的压力传感器相比,(PVA-CMC-SiO2–Cr2O3)纳米结构表现出优异的压力敏感性、优异的柔韧性和较强的环境适应能力。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号