...
首页> 外文期刊>Physical and Engineering Sciences in Medicine >Determining tolerance levels for quality assurance of 3D printed bolus for modulated arc radiotherapy of the nose
【24h】

Determining tolerance levels for quality assurance of 3D printed bolus for modulated arc radiotherapy of the nose

机译:Determining tolerance levels for quality assurance of 3D printed bolus for modulated arc radiotherapy of the nose

获取原文
获取原文并翻译 | 示例
           

摘要

Given the existing literature on the subject, there is obviously a need for specific advice on quality assurance (QA) tolerances for departments using or implementing 3D printed bolus for radiotherapy treatments. With a view to providing initial suggested QA tolerances for 3D printed bolus, this study evaluated the dosimetric effects of changes in bolus geometry and density, for a particularly common and challenging clinical situation: specifically, volumetric modulated arc therapy (VMAT) treatment of the nose. Film-based dose verification measurements demonstrated that both the AAA and the AXB algorithms used by the Varian Eclipse treatment planning system (Varian Medical Systems, Palo Alto, USA) were capable of providing sufficiently accurate dose calculations to allow this planning system to be used to evaluate the effects of bolus errors on dose distributions from VMAT treatments of the nose. Thereafter, the AAA and AXB algorithms were used to calculate the dosimetric effects of applying a range of simulated errors to the design of a virtual bolus, to identify QA tolerances that could be used to avoid clinically significant effects from common printing errors. Results were generally consistent, whether the treatment target was superficial and treated with counter-rotating coplanar arcs or more-penetrating and treated with noncoplanar arcs, and whether the dose was calculated using the AAA algorithm or the AXB algorithm. The results of this study suggest the following QA tolerances are advisable, when 3D printed bolus is fabricated for use in photon VMAT treatments of the nose: bolus relative electron density variation within +/- 5% (although an action level at +/- 10% may be permissible); bolus thickness variation within +/- 1 mm (or 0.5 mm variation on opposite sides); and air gap between bolus and skin = 5 mm. These tolerances should be investigated for validity with respect to other treatment modalities and anatomical sites. This study provides a set of baselines for future comparisons and a useful method for identifying additional or alternative 3D printed bolus QA tolerances.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号