...
首页> 外文期刊>Applied and Environmental Microbiology >Environmental Dependence of Competitive Fitness in Rifampin-Resistant rpoB Mutants of Bacillus subtilis
【24h】

Environmental Dependence of Competitive Fitness in Rifampin-Resistant rpoB Mutants of Bacillus subtilis

机译:Environmental Dependence of Competitive Fitness in Rifampin-Resistant rpoB Mutants of Bacillus subtilis

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

RNA polymerase (RNAP) is a highly conserved macromolecular machine that contributes to the flow of genetic information from genotype to phenotype. In Bacillus subtilis, mutations in the rpoB gene encoding the beta-subunit of RNAP have been shown to alter a number of global phenotypes, including growth, utilization of unusual nutrient sources, sporulation, germination, and production of secondary metabolites. In addition, the spectrum of mutations in rpoB leading to rifampin resistance (Rif(r)) can change dramatically depending upon the environment to which B. subtilis cells or spores are exposed. Rif(r) rpoB mutations have historically been associated with slower growth and reduced fitness; however, these assessments of fitness were conducted on limited collections of mutants in rich laboratory media that poorly reflect natural environments typically inhabited by B. subtilis. Using a novel deep-sequencing approach in addition to traditional measurements of growth rate, lag time, and pairwise competitions, we demonstrated that the competitive advantages of specific rpoB alleles differ depending on the growth environment in which they are determined. IMPORTANCE Microbial resistance to antibiotics is a growing threat to public health across the world. Historically, resistance to antibiotics has been associated with reduced fitness. A growing body of evidence indicates that resistance to rifampin, a frontline antibiotic used to treat mycobacterial and biofilm-associated infections, may increase fitness given an appropriate environment even in the absence of the selective antibiotic. Here, we experimentally confirm this phenomenon by directly comparing the fitness of multiple rifampin-resistant mutants of Bacillus subtilis in rich LB medium and an asparagine minimal medium. Our research demonstrates that the fitness cost of rifampin resistance can vary greatly depending upon the environment. This has important implications for understanding how microbes develop antimicrobial resistance in the absence of antibiotic selection.
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号