【24h】

A new glucoalkaloid fromUncaria glabrata

机译:一种新的葡萄糖生物碱来自Uncaria glabrata

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. I 1992 A New Glucoatkaloid from Uncaria glabrata Dayar Arbain,a Lindsay T. Byrne,b Magda Mina Putra,a Melvyn V. Sargent *-b and Mardius Syarif a a Department of Pharmacy, University of Andalas, Padang, West Sumatra, Indonesia Department of Chemistry, University of Western Australia, Nedlands, Western Australia, 6009 Extraction of the bark of Uncaria glabrata DC (Rubiaceae) has yielded an unusual indole mono-terpenoid glucoalkaloid, glabratine, for which structure 7 is proposed on the grounds of its spectral data. Uncaria glabrata DC (Rubiaceae), known in West Sumatra as 'akar kait' and used in traditional medicine as a remedy for food poisoning, is a woody climber attaining a height of 30 m often with a trunk diam. of 10 cm.In continuation of our phytochemical survey of West Sumatra it was observed that an extract of the bark of this plant gave a positive Mayer's test. The basic portion of the methanolic extract of the bark furnished a mixture of uncarines whilst the neutral portion was a mixture of glycosides which after extensive chromatographic purification gave a glucoalkaloid, for which we suggest the trivial name glabratine, which formed needles (from ethanol), m.p. 263-265 "C. The CIMS(NH,) of the new alkaloid showed a weak MHf ion at mi= 531 which was more intense in the FABMS, which also showed a strong fragment ion at mlz 369 corresponding to the loss of a hexose (C6H1005)unit. The microanalytical data were in accord with the molecular formula C27H34N209.Acetylation of glabratine with acetic anhydride and pyridine supplied an amorphous pentaacetate which exhibited an MH + ion at mi-?741 in its FABMS, which suggested, if the hexose residue had undergone tetraacetylation, that the aglycone contained a hydroxy group which had also undergone acetylation. The 'H and I3C NMR spectra (see Table 1) were highly informative and their analysis was aided by proton-proton decoupling, 'H, 3C heteronuclear correlation, and by the DEPT technique. The chemical shift and multiplicity of certain signals in the 13C spectrum of the pentaacetate were very similar to those for the C-3, C-5, C-6, C-15, C-173 and the methoxycarbonyl group of the synthetic compounds 1,4 2 and 3' of the vallesiachotamine type.6 The electronic spectrum of glabratine: amp;,,,,(MeOH) 224 and 294 nm (c: 34 300 and 31 9110 respectively), was also reminiscent of that of vallesiachotamine tL6 The band at 294 nm was of enhanced intensity owing to the superposition of the P-aminoacrylate chromophore on the indole spectrum. In keeping with the presence of this chromo- phore the IR spectrum (KBr) of glabratine showed bands at 1655 (C=O) and 1580 (C=C) cm-'.The chemical shifts of the indolic carbon atoms in the 13C NMR spectrum of the pentaacetate pointed to oxygenation at C-9' which was also supported by the observation of NOE interactions between the NH proton and an aromatic proton at C-12 (the only alternative location for oxygenation). The observed second-order aromatic 'H NMR spectrum was computer simulated providing the chemical shifts and coupling constants shown in Table 1.In addition to the sugar residue, the I3C NMR spectrum revealed the presence of a vinyl group, a methine carbon, and a methylene group attached to oxygen, and the 'H NMR spectrum, with appropriate decoupling experiments, indicated their interrelationship as CH2=CH-CH-CH20 and their attachment at C-15 through the methine carbon atom. 1; 38-H. 15~-H 4 2; -H, 15~-H 3; k-H, 15j3-H 6 6' CHpOH 1 HO* HO 3' HO loamp; 7 2 l1 '13 h 19 H 21 /I 7 / 1 8 9 Scheme 1 666 Table 1 NMR spectra of glabratine pentaacetate Carbon no. 6, 6,,, J/Hz 1* 131.93 3 48. I7 4.57, br d, J,+,41,12.5 5 51.18 3.51,ddd, J5a.5012.0,J5,.6,,12.0, 551.61 3.5 3.63, dd, J51,.5.112.0, J,,.61,4.5 6 23.63 2.76,6-PH 3.05, br d, Jha,6D15.5 7 107.60 8 1 16.69 9 I 50.7I 10 103.08 6.59, X of ABX, J, 0.,, 8.0, Jl0.1, 1.2 I1 7.03, AB of ABX, J, l.l 9.7, J11.lO 8-09512.10 1.2 13 137.95 14 32.26 15 3 1.34 16 94.56 17 146.54 7.59, s 18 117.31 5.04, dd, JlS.1, 10.0, J,,.,, 1.5 5.06, dd, J,,,,, 16.5,J,,.,, 1.5 19 138.48 5.79,ddd,J,,.,, 16.5,J19.1810.0, J19.20 8.5 20 50.3 8 2.42, m 21 66.29 4.09,dd, J21,2110.5, J21.208.0 4.37, dd, J,,,,, 10.5,J21.203.5 C'0,Me 166.99 OMe 50.60 3.66, s NH 8.38, br s 1' 98.03 5.28, d, J, ..2t 7.6 3' 7I .OO 5.40, dd, J2*,3*9.0, J , S , , .7.6 3' 72.99 5.33, dd, J3,.4, 9.0, J3C.2 , 9.0 4' 68.44 5.20, dd, J4,.5, 9.9, J 4'+3'9.0 5' 7I .96 3.94, ddd, J5,.4, 9.9, J,S.,f 5.5, J,..,.2.4 6' 62.02 4.18, dd, J,..,. 12.9, J6, ,,, 2.4 4.32, dd, J,.,,. 12.9, J6.,,,5.5 MeCO.0 171.61, 170.62, 170.26, 169.50, 169.24 MeCO.0 2 1.09, 20.70, 20.63, 20.58 ( x 2) The '3Cand 'H NMR spectra of the sugar residue in both the alkaloid and its pentaacetate revealed that it was glucose and the magnitude of the coupling constant of the anomeric proton, in the 'H NMR spectrum of the pentaacetate, with its neighbour (J1,.z, 7.6 Hz) established the 0-configuration of the glucoside linkage.8 The attachment of the glucose residue to the benzene ring was revealed by the mass spectra of both the alkaloid and its pentaacetate.The EIMS of the pentaacetate did not show a molecular ion but a base peak at m/z 627 and a weak ion at riijr 680 which were shown by high resolution to have the compositions C31H35N20,2 respectively,and C35H40NZ01z which correspond to the ions 4 and 5, resulting from the elision of the side chain attached at C-15 in one case and the elimination of acetic acid in the other. In the FABMS of glabratine there was also an ion at m/z 459 resulting from the loss of the side chain attached at C-15. This evidence pointed J. CHEM. SOC. PERKIN TRANS. I 1992 to the attachment of the glucose residue at C-9 which was confirmed by the observation of a 137; NOE at the 10-H when the frequency of the anomeric proton was irradiated in the 'H NMR spectrum of the pentaacetate. This evidence allows structure 7 to be advanced without specification of stereochemistry.The biosynthesis of the complex array of monoterpenoid indole alkaloids involves the key intermediate strictosidine 6 and commences with glycolysis. Glabratine would thus be derived from an oxygenated strictosidine (see Scheme 1) by glycolysis, rotation about the 14,15-bond, reduction of the aldehyde at C-21, and cyclization linking C-17 to N-4. Such a transposition requires a change from the normal 15a-H con-figuration found in secologanin to a 150-H configuration. If the 15P-H stereochemistry is assumed then it follows from the proton coupling constants for 15-H, 14-H and 3-H that 3-H is in the expected x-configuration.The stereochemistry of C-20 is also assumed on the grounds of the probable biogenesis. The circular dichroism for glabratine is complicated by the super- position of the P-aminoacrylate chromophore on the indole chromophore so that it is hazardous to draw stereochemical conclusions from the sign of the Cotton effect near 290 nm." Glabratine 7 is thus a close relative of vallesiachotamine 86 and antirhine 9 ' in which strictosidine has undergone simple modifications. It, however, is highly unusual among indole monoterpenoid alkaloids in bearing a glucose residue on the benzenoid ring. Further work on the glucoalkaloids of this plant is in progress. Acknowledgements We thank the International Foundation for Science (Stockholm) and the Network for the Chemistry of Biologically Important Natural Products for financial support.We also thank Mr. Tahan Uji of the Herbarium Bogoriense for identifying plant material and Dr. John Macleod for the mass spectra. References 1 D. Arbain, R. Djamal, Wiryani and M. V. Sargent, Aust. J. Chem., 1991,44,1013. 2 A. F. Beecham, N. K. Hart, S. R. Johns and J. A. Lamberton, Aust. J. Chem., 1968, 21,49 1. 3 This biogenetic numbering system is that of J. LeMen and W. I. Taylor, Experientia, 1965,21, 508. 4 E. Wenkert, C.-J. Chang, H. P. S. Chawla, D. W. Cochran, E. W. Hagaman, J. C.King and K. Orito, J. Am. Chem. Soc., 1976,98,3645. 5 M. Lounasmaa and C.-J. Johansson, Tetrahedron, 1977,33,113. 6 C. Djerassi, H. J. Monteiro, A. Walser and L. J. Durham, J. Am. Chem. Soc., I966,88, 1792. 7 R. Verpoorte, T. A. van Beek, R. L. M. Riegman, P. J. Hylands and N. G.Bisset, Org. Map. Res., 1984, 22, 328. 8 K. Bock and H. Thsgerson, Ann. Rep. NMR Spectrosc., ed. G. A. Webb, Academic Press, London, 1982, vol. 13,p. 2. 9 J. E. Saxton, The Monoterpenoid Indole AIkaloids, John Wiley and Sons, New York, 1983. 10 W. Klyne, R. J. Swan, N. J. Dastoor, A. A. Gorman and H. Schmid, Helv. Chim. Acta, 1967,50, 1 15. 11 S. R. Johns, J. A. Lamberton and J. L. Occolowitz, Aust. J. Chem., 1967,20,1463. Paper 1/059451 Received 25th November 1991 Accepted 14th January 1992
机译:J. CHEM. SOC. PERKIN 译.I 1992 A New Glucoatkaloid from Uncaria glabrata Dayar Arbain,a Lindsay T. Byrne,b Magda Mina Putra,a Melvyn V. Sargent *-b and Mardius Syarif a Department of Pharmacy, University of Andalas, Padang, West Sumatra, Indonesia 西澳大利亚大学化学系,西澳大利亚尼德兰兹,6009 提取 Uncaria glabrata DC(茜草科)的树皮产生了一种不寻常的吲哚单萜类葡萄糖碱, 格拉布拉汀,其结构 7 是基于其光谱数据提出的。Uncaria glabrata DC(茜草科),在西苏门答腊被称为“akar kait”,在传统医学中用作食物中毒的补救措施,是一种木质攀缘植物,高度通常达到 >30 m,树干直径通常为 10 cm.In 继续我们对西苏门答腊的植物化学调查,观察到这种植物树皮的提取物给出了阳性的 Mayer 测试。树皮甲醇提取物的碱性部分提供了十一辛烷的混合物,而中性部分是糖苷的混合物,经过广泛的色谱纯化后得到葡萄糖碱,为此我们建议将其命名为格拉布拉汀,它形成针(来自乙醇),m.p.263-265“C。新生物碱的CIMS(NH,)在mi=531处显示出较弱的MHf离子,在FABMS中更强烈,在mlz 369处也显示出与己糖(C6H1005)单元损失相对应的强碎片离子。微量分析数据与分子式C27H34N209一致。光甘草碱与乙酸酐和吡啶的乙酰化反应得到无定形五乙酸酯,其FABMS在mi-?741处表现出MH+离子,这表明,如果己糖残基发生了四乙酰化,则该糖苷配基含有一个羟基,该羟基也发生了乙酰化。'H和I3C NMR谱图(见表1)信息量很大,质子-质子解耦、'H、3C异核相关性和DEPT技术有助于其分析。五乙酸酯13C光谱中某些信号的化学位移和多重性与C-3、C-5、C-6、C-15、C-173和缬烯磷胺型合成化合物1,4、2和3'的甲氧羰基非常相似,,,,6。 也让人想起缬来酰化胺tL6的条带,由于P-氨基丙烯酸酯发色团在吲哚光谱上的叠加,294nm处的条带强度增强。为了与这种发色团的存在保持一致,光甘草汀的红外光谱(KBr)在1655(C=O)和1580(C=C)cm-'处显示出条带。在五乙酸酯的13C NMR光谱中,吲哚碳原子的化学位移指向C-9'处的氧化,这也得到了NH质子和C-12处芳香族质子之间NOE相互作用(氧化的唯一替代位置)的支持。观察到的二级芳香族'H NMR谱图是计算机模拟的,除了糖残基外,还提供表 1.In 所示的化学位移和耦合常数,I3C NMR谱图显示存在乙烯基、甲烷碳和亚甲基连接到氧和'H NMR谱图,并进行适当的解耦实验, 它们之间的相互关系为CH2=CH-CH-CH20,它们通过甲胺碳原子在C-15上连接。1;38-H. 15~-H 4 2;%-H, 15~-H 3;k-H, 15j3-H 6 6' CHpOH 1 HO* HO 3' HO lo& 7 2 l1 '13 h 19 H 21 /I 7 / 1 8 9 方案 1 666 表 1 五乙酸格拉布拉汀的核磁共振谱图 6号碳, 6,,, J/Hz 1* 131.93 3 48.I7 4.57, br d, J,+,41,12.5 5 51.18 3.51,ddd, J5a.5012.0,J5,.6,,12.0, 551.61 3.5 3.63, dd, J51,.5.112.0, J,,.61,4.5 6 23.63 2.76,6-PH 3.05, br d, Jha,6D15.5 7 107.60 8 1 16.69 9 I 50.7I 10 103.08 6.59, X of ABX, J, 0.,, 8.0, Jl0.1, 1.2 I1 7.03, ABX 的 AB, J, l.l 9.7, J11.lO 8-09512.10 1.2 13 137.95 14 32.26 15 3 1.34 16 94.56 17 146.54 7.59, s 18 117.31 5.04, dd, JlS.1, 10.0, J,,.,, 1.5 5.06, dd, J,,,,, 16.5,J,,.,, 1.5 19 138.48 5.79,ddd,J,,.,, 16.5,J19.1810.0, J19.20 8.5 20 50.3 8 2.42, m 21 66.29 4.09,dd, J21,2110.5, J21.208.0 4.37, dd, J,,,,, 10.5,J21.203.5 C'0,Me 166.99 OMe 50.60 3.66, s NH 8.38, br s 1' 98.03 5.28, d, J, ..2t 7.6 3' 7I .OO 5.40, dd, J2*,3*9.0, J , S , , .7.6 3' 72.99 5.33, dd, J3,.4, 9.0, J3C.2 , 9.0 4' 68.44 5.20, dd, J4,.5, 9.9, J 4'+3'9.0 5' 7I .96 3.94, ddd, J5,.4, 9.9, J,S.,f 5.5, J,..,.2.4 6' 62.02 4.18, dd, J,..,.12.9, J6, ,,, 2.4 4.32, dd, J,.,,.12.9, J6.,,,5.5 MeCO.0 171.61, 170.62, 170.26, 169.50, 169.24 MeCO.0 2 1.09, 20.70, 20.63, 20.58 ( x 2) 生物碱及其五乙酸中糖残基的'3Cand'H NMR谱图显示,在五乙酸酯的'H NMR谱图中,它是葡萄糖和异构质子耦合常数的大小, 与它的邻居(J1,.z,7.6 Hz)建立了葡萄糖苷键的0-构型.8生物碱及其五乙酸盐的质谱揭示了葡萄糖残基与苯环的连接。五乙酸酯的EIMS没有显示分子离子,而是在m/z 627处显示基峰,在riijr 680处显示弱离子,通过高分辨率显示其组成分别为C31H35N20,2,C35H40NZ01z对应于离子4和5,其中一种情况下是C-15处连接的侧链被消除,另一种情况下是乙酸的消除。在光果碱的FABMS中,由于连接在C-15处的侧链丢失,在m/z 459处也存在离子。这一证据指向 J. CHEM. SOC. PERKIN, TRANS.I 1992 在 C-9 处附着葡萄糖残基,这通过观察 137 得到证实;在10-H处,当异构质子的频率在五乙酸酯的'H NMR光谱中被照射时,NOE。这一证据允许结构 7 在没有立体化学规范的情况下进行推进。单萜类吲哚生物碱的复杂阵列的生物合成涉及关键的中间体 strictosidine 6,并从糖酵解开始。因此,通过糖酵解、围绕 14,15 键旋转、C-21 位点醛的还原以及将 C-17 与 N-4 连接起来的环化反应,格拉布拉汀将从含氧的 strictosidine(见方案 1)衍生而来。这种转置需要从secologanin中发现的正常15a-H构型更改为150-H构型。如果假设 15P-H 立体化学,那么从 15-H、14-H 和 3-H 的质子耦合常数可以看出 3-H 处于预期的 x 构型中。C-20的立体化学也是基于可能的生物发生而假设的。由于对氨基丙烯酸酯发色团在吲哚发色团上的叠加,光果碱的圆二色性变得复杂,因此从290 nm附近的棉花效应符号得出立体化学结论是危险的。因此,Glabratine 7 是缬来酰化磷胺 86 和抗莱茵 9 ' 的近亲,其中 strictosidine 经历了简单的修饰。然而,它在吲哚单萜类生物碱中非常不常见,因为它在苯环上带有葡萄糖残基。关于该植物的葡糖碱的进一步研究正在进行中。致谢 我们感谢国际科学基金会(斯德哥尔摩)和生物重要天然产物化学网络提供的财政支持。我们还要感谢植物标本馆的Tahan Uji先生鉴定植物材料,并感谢John Macleod博士的质谱分析。参考文献 1 D. Arbain, R. Djamal, Wiryani and M. V. Sargent, Aust. J. Chem., 1991,44,1013.2 A. F. Beecham, N. K. Hart, S. R. Johns 和 J. A. Lamberton, Aust. J. Chem., 1968, 21,49 1.3 这个生物遗传编号系统是 J. LeMen 和 W. I. Taylor, Experientia, 1965,21, 508 的编号系统。4 E.温克特,C.-J.Chang, H. P. S. Chawla, D. W. Cochran, E. W. Hagaman, J. C.King 和 K. Orito, J. Am. Chem. Soc., 1976,98,3645.5 M. Lounasmaa 和 C.-J.约翰逊,四面体,1977,33,113。6 C. Djerassi、H. J. Monteiro、A. Walser 和 L. J. Durham, J. Am. Chem. Soc., I966,88, 1792.7 R. Verpoorte, T. A. van Beek, R. L. M. Riegman, P. J. Hylands 和 N. G.Bisset, Org. Map.研究, 1984, 22, 328.8 K. Bock 和 H. Thsgerson, Ann. Rep. NMR Spectrosc., ed. G. A. Webb, Academic Press, London, 1982, vol. 13, p. 2.9 J. E. Saxton, The Monoterpenoid Indole AIkaloids, John Wiley and Sons, New York, 1983.10 W. Klyne、RJ Swan、N. J. Dastoor、A. A. Gorman 和 H. Schmid, Helv.奇姆。学报, 1967,50, 1 15.11 S.R.约翰斯,J.A. Lamberton 和 J. L. Occolowitz,Aust. J. Chem.,1967,20,1463。论文 1/059451 收稿日期 1991年11月25日 录用日期 1992年1月14日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号