首页> 外文期刊>CERAMICS INTERNATIONAL >Tailoring cobalt oxide nanostructures for stable and high-performance energy storage applications
【24h】

Tailoring cobalt oxide nanostructures for stable and high-performance energy storage applications

机译:定制氧化钴纳米结构,实现稳定、高性能的储能应用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

? 2022 Elsevier Ltd and Techna Group S.r.l.Different micro- and nanostructures of cobalt oxide are grown on Ni foam using surface-modifying agents via a simple one-pot hydrothermal synthesis process with the help of surface modifying agents. The structural, chemical, morphological, and electrochemical properties are systematically investigated using a potentiostat, X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) analysis. The pristine Co3O4, cetyltrimethyl ammonium bromide (CTAB) mediated Co3O4, and Triton X-100 mediated Co3O4 form the chestnut bur flower, dandelion flower, and star anise-like morphology, respectively. The electrochemical measurements demonstrate that interconnected nanonetwork of dandelion flower-like morphology obtained via CTAB delivers the highest specific capacitance of 521.63 F g?1. Since an interconnected network provides the channel path for high electronic conductivity and low diffusion resistance, the fabricated electrode provides excellent electrochemical stability over the 3000 charge-discharge cycles. It retains 95.29 of the initial capacitance after 3000 charge-discharge cycles. The result proved that surface modification of Co3O4 material improved the charge storage performance of electrodes for supercapacitor applications.
机译:?2022 Elsevier Ltd 和 Techna Group S.r.l.借助表面改性剂,使用表面改性剂使用表面改性剂在泡沫镍上生长不同的微纳米结构。采用恒电位仪、X射线衍射(XRD)、拉曼光谱、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)和布鲁瑙尔-埃米特-泰勒(BET)分析系统地研究了其结构、化学、形态和电化学性质。原始Co3O4、十六烷基三甲基溴化铵(CTAB)介导的Co3O4和Triton X-100介导的Co3O4分别形成板栗花、蒲公英花和八角茴香样形态。电化学测试表明,通过CTAB获得的蒲公英花状形态的互连纳米网络具有最高的比电容,为521.63 F g?1。由于互连网络为高电子电导率和低扩散电阻提供了通道路径,因此制造的电极在 3000 次充放电循环中具有出色的电化学稳定性。它在 3000 次充放电循环后仍保留 95.29% 的初始电容。结果表明,Co3O4材料的表面改性改善了超级电容器电极的电荷存储性能。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号