...
首页> 外文期刊>Journal of engineering thermophysics >Swirl-Decay Mechanism Generating Counterflows and Cells in Vortex Motion
【24h】

Swirl-Decay Mechanism Generating Counterflows and Cells in Vortex Motion

机译:Swirl-Decay Mechanism Generating Counterflows and Cells in Vortex Motion

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper reviews counterflows, double counterflows, and circulation cells in vortex motion and argues that all these seemingly paradoxical phenomena can be caused by a common swirl-decay mechanism (SDM). It is shown that the SDM explains (a) the counterflow of water and oil in hydrocyclones, (b) the elongated counterflow of hot and cold air in vortex tubes, (c) the double counterflow occurring in vortex combustion chambers, and (d) the back flow in tubular chimneys of vortex units. The SDM also explains the development and disappearance of circulation cells, often referred to as vortex breakdown bubbles, in sealed cylindrical containers where the flow is driven by rotation of one end disk. The SDM also works in two-fluid flows modeling vortex bioreactors. In a few words, the SDM works as follows. Because of the balance of the centrifugal force and the radial gradient of pressure in a fast-swirling flow, the pressure at the rotation axis is smaller than that at the periphery. If the swirl decays downstream, the pressure grows along the axis. This axial gradient of pressure decelerates the near-axis flow and can reverse it, thus developing a local or global counterflow.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号