首页> 外文期刊>The Journal of Chemical Physics >Non-Markov bond model for dynamic force spectroscopy
【24h】

Non-Markov bond model for dynamic force spectroscopy

机译:Non-Markov bond model for dynamic force spectroscopy

获取原文
获取原文并翻译 | 示例
           

摘要

Single-molecule force spectroscopy data are conventionally analyzed using a schematic model, wherein a molecular bond is represented as a virtual particle diffusing in a one-dimensional free-energy landscape. However, this simple and efficient approach is unable to account for the "anomalous" bond-breaking kinetics increasingly observed in force spectroscopy experiments and simulations, e.g., in the form of non-exponential distributions of bond lifetimes under constant load. Here, we show that such characteristic traits arise naturally in a rigorous extension of the one-dimensional theory that accounts for the transient dynamics of a generic set of coupled degrees of freedom. These "hidden modes" affect the reaction dynamics in various ways, depending on their relaxation spectrum and the loading protocol, giving rise, in particular, to apparent static and dynamic disorder. In two complementary asymptotic limits, we are able to find exact analytical expressions for pertinent experimental observables, such as the mean rupture force and the rupture-force distribution. Intriguingly, our asymptotic results become unconditionally exact at high loading rates, thus providing us with a microscopically consistent theory of rapid force spectroscopy that avoids the usual Markov assumption. Published under license by AIP Publishing.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号