首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Synthetic approaches to thiathromboxanes. Part 2. Synthesis of structural isomers of thiathromboxane A2
【24h】

Synthetic approaches to thiathromboxanes. Part 2. Synthesis of structural isomers of thiathromboxane A2

机译:硫甲苯胺的合成方法。第 2 部分。硫甲醚A2结构异构体的合成

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. I 1988 Synthetic Approaches to Thiathromboxanes. Part 2.t Synthesis of Structural Isomers of Thiathromboxane A, Brian P. McDonald, Robert W. Steele, James K. Sutherland," and (in part) Bruce W. Leslie Chemistry Department, Victoria University of Manchester, M73 9PL Andrew Brewster I.C.J. PL C,Pharmaceuticals Division, Mereside, Alderle y Park, Macclesfield, Cheshire SK 7 0 4TG Structural isomers (15) of monothiathromboxane A2 have been prepared from the half-ester (1).The basic strategy involved introduction of the 'bottom' side-chain by Michael addition, lactonisation, removal of ethoxycarbonyl, and conventional introduction of the 'top' side-chain. A link with a published dithiathromboxane synthesis is described. It is clear from Part 1 that N-chlorosuccinimide lactonisation of derivatives of (1) in the required direction necessitates that C-2 of the thiopyran ring be disubstituted.To this end we examined the reaction of (1) wtih LiNPr', to see whether a synthetically useful dianion could be obtained. Deuteriation of the species followed by exchange with H,O gave a cis-tram mixture of (2) which, by a combination of mass spectrometry and 'H n.m.r. spectroscopy, was shown to be ca. 80 monodeuteriated at C-2. Reaction of the dianion with the reactive ally1 bromide gave a 69 yield of a mixture of stereoisomers of (3). N-Chlorosuccinimide-CH,CI, converted the acids (3) into the y-lactones (6) in 79 yield. The structures followed from the characteristic pattern of spectroscopic data obtained for these compounds.In Part 1 the instability of the malonic ester (12) under conditions of basic hydrolysis was noted and contrasted with the stability of its dihydro derivative. The ready hydrolysis of the esters (6) suggested that the instability of the malonate (12) was associated with two electron-withdrawing groups at C-2 in addition to the double bond. We now examined the introduction of a relevant side chain and showed that the dianion of (1) underwent Michael addition and elimination with (E)-l-chloro-oct-l-en-3-one' to give the enones (4) (60).The structures were in accord with the spectro- scopic data obtained. In addition to the typical absorptions for the thiopyran there was observed h,,,, 224 nm (E 10 OOO), v,,,.1 680 cm-', and 6, 6.78 and 6.45 (d, J 15.5 Hz) confirming the presence of an E-enone. Reaction of the acids (4) with N-chlorosuccinimide gave a product in good yield which could be separated into major and minor fractions. The major fraction appeared to be a single compound affording spectroscopic data in accord with y-lactone structure (8), in particular the characteristic 'H n.m.r. resonances and h,,,. of the thiopyranone ring and enone unit were present. The C0,Et minor fraction was not fully characterised but 'H n.m.r. and R (1) R = H (2) R = 'H (3) R = CHZCH=CH2 (4)R = CHtCH(CO)(CHL),Me (5) R = CH=CHCH(OH)(CHZ),MesoR X (6) X = CO,Et, R =CH,CH=CH, (12) X = R = C0,Et (16) X = OMe, R = CH=CH(C0)(CH2),Me (7) X = COZH, R = CH2CH=CHz (8) X = C0,Et.R = CH(CO)(CHz),Me (9) X = C02Et, R = CH=CHCH(OH)(CH,),Me (10) X = C0,H , R = CH=CHCH(OH)(CH,),Me (11) X = COZH , R = CH=CHCH(OH)(CHL)4Me t Part 1, preceding paper.mass spectra suggested the presence of an isomer of (8) and an HCl adduct to the enone dauble bond. Owing to the difficulty in separating the two fractions the crude product was used for further reactions. In the light of our previous experience it was no great surprise that we were unable to hydrolyse the ester (8) without destruction of the molecule since it has two electron-withdrawing groups in position 2. Reduction of the keto group of (8) with NaBH, gave the alcohols (9) (76) which it was possible to hydrolyse with LiOH-H,O-tetrahydrofuran to the acids (10) (91).Oxidation of the acids (10) with Jones' reagent gave, after work-up, an Et,O extract containing a polar and a non-polar fraction; heating the solution converted the polar into the non-polar component and gave a Z,E mixture of the lactonesx (13). Each of the separated isomers gave i.r. and U.V.results, h,,,. 268 nm (E 4 500) and v,,,, 1 725 cm-I which supported the structural assignments: similarly, the 'H n.m.r. spectrum which, in addition to typical thiopyrano- furanone resonances, showed, for the major isomer 6, 6.07 (1 H, t, J 7 Hz), 3.42(1 H,dd, J 19 and 7.5 Hz), and 3.22 (1 H, dd, J 19 and 6.5 Hz), and for the minor isomer 6, 6.00 (1 H, t, J 7.5 Hz) and 3.32 (2 H, m). The mixture of isomers was used for further experiments.Continuation of the synthesis along the planned lines required conversion of the P,y-unsaturated ketone into the a$-$ The sequence ethylene acetal formation, hydrolysis of ester, decarb- oxylation, hydrolysis of acetal was also investigated. The lactones (13) were obtained in a similar overall yield but the sequence was not as reproducible as that above. 676 unsaturated isomer; this we have been unable to do. Exposure of the lactones (13) to a variety of 0-and N-centred bases gave either no change or destruction of the molecule; equally, radical- mediated isomerisations were unsuccessful as were attempts to isomerise the alcohols (14)with strong bases.Radical-induced decarboxylation of (11) was investigated without success. It is likely that the P,y-isomer is thermodynamically more stable than the a,P in this system as in simple thio enol ethers; there, however, the equilibrium position changes dramatically in favour of the ally1 isomer in going to sulphoxide and sulphone.2 0 A OH (13) X = 0 (15) (14) X = H , OH An effort to convert compound (13) into sulphoxide and sulphone by treatment with nz-chloroperbenzoic acid gave only intractable mixtures. Reaction of compound (13) with NaI0,- H,O-MeOH did give a single product which was assigned structure (16) on the basis of spectroscopic data. It is likely that sulphoxidation did occur but a Pummerer-type reaction occurred subsequently.At this stage it was thought worthwhile to introduce the 'top' side-chain into the lactone (13) and examine the biological activity of the product. Using conventional methodology the lactones (13) were reduced with 2 mol of Bu',AlH to give a lactol alcohol which when condensed with 3 mol equiv. of Ph, PCH(CH ,),CO ,Na ex. NaCH, SOMe and Ph, 6(CH 2)4-CO,HG afforded the acids (15) (70); from the method of preparation it is likely that diastereoisomers at the *atoms are present. Although we were unable to obtain satisfactory com- bustion analyses the 'H n.m.r. spectrum and c.i. mass spectrum support the gross structure. Bioassays on the rabbit aorta and guinea pig ileum established that (15) is a weak thromboxane A, agonist.We now turned to a second strategy. Satisfactory prepar- ations of the acetal (17) and the aldehyde (18), potential inter- mediates for the synthesis of dithiathromboxane A,, were des- cribed in Part 1. Such conversions first require the introduction of the two side-chains (for which there are fairly standard methods available) and, second, conversion of the dihydro- thiopyran ring into the bridged thietane for which there was no established method at the inception of this stage of the project. However, during the course of the work the Ono Pharmaceutical group published4 a synthesis of dithiathromboxane A, uia the intermediates (19T) and (21T)encouraging us to investigate the synthesis of the ketone (19T) from the lactone (17).Reduction of the lactone (17) with Bu',AIH gave a mixture of isomeric lactols (24)readily oxidised back to starting material with MnO,. The lactols (24)were condensed with the phosphorane derived from 5-triphenylphosphoniopentanoicacid bromide using the Corey procedure to give the hydroxy acid, which was converted into the ester (22)with CH,N,. Oxidation of the ester (22) with Cr0,-C,H,N-CH,C1, gave a product which could be separated into major (81) and minor (4) fractions. The major fraction showed h,,,, 309 nm, v,,,. 1730 and 1665 cm-', and the 'H n.m.r. coupling pattern shown in the Figure. These results are in accord with the information provided by the Japanese workers for the isomer with cis-side chains (19C); this stereochemistry was assigned by them on the basis of the 4Jof 2 J.CHEM. SOC. PERKIN TRANS. I 1988 H (17) X = (OMe) (19)X = (OMe)2 C= R8, R'* cis (18) X = 0 (2O)X = 0 T = R*,dZtrans IH I C0,Me (21) OH OMe (241 2-30 6.06-2-74 92-55 Figure. Hz between 11-H and 12-H and is not completely unambiguous in the light of the X-ray structure discussed in Part 1. However, it is strengthened by the preparation of (19C) from the lactone (17) of established stereochemistry. Capillary g.1.c. showed that the major fraction contained two compounds in a 92:8 ratio. The 'H n.m.r. spectrum did not suggest the nature of the impurity; however ' n.m.r. spectroscopy showed the expected resonances for a single isomer except for two minor absorptions at 6, 133.4 and 127.0 suggesting that the minor component was the E-alkene isomer.The minor fraction which had been separated had spectroscopic data in accord with those reported for the trans-acetal (19T). Since thromboxane A, has the side- chains trans we examined the possibility of isomerising the ketone (19C) under a variety of equilibrating conditions. To our surprise we were unable to increase the proportion of trans- isomer substantially, suggesting that (19C) is the thermo- dynamically more stable isomer. This was confirmed by ex- change with NaOC2H,-2HOC2H,; 'H n.m.r. spectroscopy demonstrated that 10-H, 8-H, and Me0 had exchanged and capillary g.1.c. showed no change in isomer ratios. Attempts to change the isomer ratio by kinetic protonation of putative enolates were also unsuccessful as were attempts to isomerise the aldehyde (20C)which was prepared by reaction of the acetal (19C) with HC0,H.' 'H N.m.r.spectroscopy and reacetalis- J. CHEM. SOC. PERKIN TRANS. I 1988 ation of the aldehyde (20C) confirmed that no isomerisation had occurred during the initial conversion. The next stage of the Hamanaka synthesis involves HSCH,CH,CO,Me addition to the enone (19T) to give the sulphide (21T) along with a minor amount of other isomers. Addition of the thiol (catalysed by Pr',NEt) to the cis-enone (19C) gave an adduct (40) accompanied by unchanged starting material and the cis-enone with and E-alkene side- chain. The adduct which we obtained is different from that reported by the Hamanaka group; in particular in its 'H n.m.r.spectrum 13-H is doublet 6 4.39 (J 2.5 Hz) coupled with a proton at 6 ca. 2.90 as opposed to 6 4.43 (J 4.1 Hz) coupled to 6 3.52 (J4.3 Hz). In addition, 1 l-H is a dd (J 11.5 and 3.5 Hz) at 6 4.51 in contrast to 6 4.64 (dd, J 8.7 and 4.7 Hz). These data do not allow an unambiguous assignment of stereochemistry to our adduct. However, the inability of Pri2NEt to equilibrate the isomers (19C) and (3T) together with the regeneration of the enone (19C)from the adduct (21C) suggests that the side-chains are cis. 'H N.m.r. spectroscopy indicates an equatorial sulphide substituent in (21C)and, provided that the acetal is pseudoaxial as in (19C), leads to the relative stereochemistry indicated. It follows that the Hamanaka adduct (21T) has trans- side-chains; however, the 8-H, 12-H J value (4.1 Hz) reported is not con- sistent with the diequatorial disposition of the side-chains in a chair-ring conformation.* This could be accounted for by di- axial side-chains in a chair conformation or a twist conform- ation.In either case, this raises the question of the sulphide stereochemistry in the Hamanaka adduct and, thus, of the thietane ring in the final dithiathromboxane-A,. If the adduct (21T) has the side-chains diaxial and the sulphide equatorial then the thietane sulphur will be trans to the heptenoic acid side- chain. On the other hand, if the ring is a twist conformation, then either isomer is possible.IJsing the aldehyde (18) and standard condensation with di- methyl (2-oxohepty1)phosphonate ' the enone (25) was pre- U l! 5H11 0 amp;H (25) (26) pared. On isomerisation with K0Bu'-tetrahydrofuran it was converted into the P,y-unsaturated ketone identical with the major isomer prepared as described in Part 1. Owing to the agonist (rather than the desirable antagonist) activity reported for dithiathromboxane A, and the isomeris- ation difficulties described, these approaches were discontinued. After the completion of this work Lane and Taylor6 showed that a more favourable trans-cis ratio of the ketones (26C) and (26T) could be obtained by NaOMe-MeOH isomerisation of (26C) than in the case of (19C).By recycling, a predominance of trans-adduct could be obtained.The ketone (26C) is potentially available from (20C) or (25). Experimental 2-Allyl-3-c~arhoxymethyl-2-ethoxycarbonyl-3,6-dihydro-2H-thiopyran (3).--1.4~ BuLi In hexane (4.4 ml) was added to * The mirror enone which we obtained substantially agrees with the 'H n.m.r. data reported for the enone (3T) except that 10-H and 8-H show long-range coupling of 2 Hz. If these compounds are indeed identical then the ring system cannot have the assumed half-chair conformation. 677 Pr',NH (0.94 ml) in tetrahydrofuran (5 ml) cooled to -5 "C under a N, atmosphere. After 45 min the acid (1) (640 mg) in tetrahydrofuran (5 ml) was added slowly. The dark red solution was stirred at -10 "C for 1.5 h and then ally1 bromide (0.5 ml) was added.The cooling bath was removed and after 75 min 2h1 HCl was added. The mixture was extracted with Et,O (2 x 50 ml), and the extract dried, and concentrated to give an oil which after flash chromatography on silica gel eluting with CHC1,- MeOH (19: 1) afforded the acids (3)(520 mg) as an oil, v,,,. 1730 and 1710 cm-'; 6, 5.85 (3 H, m), 5.09 (2 H, m), 4.18 (2 H, q), 3.05 (3 H, m), 2.60 (3 H, m), 2.45 (1 H, m), and 1.24 (3 H, t) (Found: C, 57.5; H, 6.8; S, 11.9; M+, 270.0928. C,,H,,O,S requires C, 57.8; H, 6.7; S,11.9; M, 270.0926). 4-Allyl-4-ethoxycarbonyl-3a,7a-dihydro-4H-thiopyrano4,3-bfuran-2( 3H)-one (6).--N-Chlorosuccinimide (42 mg) was added to the acids (3) (82 mg) in CH,Cl, (5ml). After 90 min the solution was shaken with saturated aqueous NaHCO,, dried, and concentrated to give the lactones (6) (64 mg) as an oil, vmaX.1 780 and 1 725 cm-'; A,,,. 237 nm (E 4 OW), 6H6.24 (1 H, d, J 11 Hz), 5.75 (2 H, m), 5.14 (3 H, m), 4.21 (2 H, q), 3.24 (1 H, dt, J 12 and 8.5 Hz), 2.81 (2 H, m), 2.65 (1 H, dd, J 14.5 and 8.5 Hz), 2.48 (1 H, dd, J 17 and 8.5 Hz), and 1.25 (3 H, t) (Found: M', 268.0773. C, ,HI6O4S requires M, 268.0769). 4-Allyl-4-carboxy-3a,7a-dihydro-4H-thiopyrano4,3-b~uran-2(3H)-one (7).-LiOH (100 mg) In water (5 ml) was added to the esters (6) (73 mg) in tetrahydrofuran (5 ml) under a N, atmosphere. After 3 h 2~ HCl was added and the solution saturated with NaCl and extracted with Et,O. The extract was shaken with saturated aqueous NaHCO,, acidified, and extracted with Et,O.Concentration of the dried extracts gave the acids (7) (58 mg). The two acids were separated by t.1.c. on silica HF254 using CHC1,-AcOH (4:l). The more polar product showed vmax.1775 and 1725 cm-'; h,,,, 245 nm (E 4300); 6, 6.28 (1 H, dd, J 11 Hz), 5.84 (1 H, m), 5.79 (1 H, dd, J 11 and 3 Hz), 5.21 (3 H, m), 3.27 (1 H, m), and 2.75 (4 H, m) (Found: M', 240.0446. C, ,H,,O,S requires M, 240.0456). The less polar product showed v,,,, 1770 and 1725 cm-'; A,,,. 245 nm (4 700); 6, 6.45 (1 H, d, J 9 Hz), 6.19 (1 H, dd, J 9 and 6.5 Hz), 5.95 (1 H, m), 5.30 (2 H, m), 4.62 (1 H, d, J6.5 Hz), 3.00 (1 H, dd, J 11 and 3.5 Hz), 2.85 (1 H, dd, J 17 and 4 Hz),2.72 (1 H, dd, J 16 and 6 Hz), 2.57 (1 H, dd, J 17 and 8 Hz), and 2.36 (1 H, dd, J 17 and 11 Hz) (Found: M', 240.0454). 3-Carboxymethyl-2-ethoxycarbonyl-2-(3-oxo-octenyl)-3,6-di-hydro-2H-thiopyran (4).-1.55~ BuLi In hexane (2.75 ml) was added to Pr',NH (0.6 ml) in tetrahydrofuran (5 ml) under a N, atmosphere at -10 "C.After 30 min the acids (1) (431 mg) in tetrahydrofuran (5 ml) were added to give a precipitate. After being stirred for 100 min, the mixture was cooled to -78 "C and (Me,N),PO (0.75 ml) added. After 1 h, 1-chloro-oct-1-en-3-one (720 mg) in tetrahydrofuran (3 ml) was added to form a dark red solution. After 3 h at -78 "C the solution was allowed to warm to ambient temperature overnight. 2~ HCl Was added and the solution extracted with Et,O (3 x 30 ml). The extract was repeatedly shaken with saturated aqueous Na,CO, until the water was no longer red.The basic extracts were acidified with 2~ HC1 and shaken with EtOAc. After being shaken with saturated brine the dried EtOAc solution was concentrated to give a red oil which on flash chromatography on silica gel eluting with hexane-Et,O-HC0,H (15: 15 :2) gave the enones (4) (497 mg) as an oil, vmaX,1 735, 1 710, and 1 680 cm-'; A,,,. 224 nm (10000); 6, 6.78 (1 H, d, J 15.5 Hz), 6.45 (1 H, d, J 15.5Hz),5.96(1H,m),5.81(1H,m),4.23(2H,q),3.19(1 H,m), 3.03 (2 H, br s), 2.60 (4 H,m), 1.68 (2 H, m), 1.26 (6H, m), and 0.86 (3 H, t). A 2,4-dinitrophenylhydrazoneof the methyl ester of (8) was prepared, m.p. 98-101 "C(Found: C,54.7; H, 5.9; N, 10.2; S, 5.8. C,,H,,N,O,S requires C, 54.7; H, 5.9; N, 10.2; S, 5.8).4-Ethoxy carbonyl-4-(3-oxo-octenyl)-3a,7a-dihydro-4H-thia-pyrano4,3-bfuran-2(3H)-one (8).--N-Chlorosuccinimide (58 mg) was added to the acids (4) (1 38 mg) in CH,Cl, (5 ml). After 1 h, insoluble material was filtered off and the solvent removed under reduced pressure. The residue was dissolved in Et,O, and the solution shaken with saturated aqueous NaHCO,, dried, and concentrated to give the lactones (8) (120 mg), v,,,. 1 795, 1 740, 1705, 1 685, and 1 620 cm-'; h,,,. 222 nm (E lOOOO), 6H6.82 (1 H, d, J 15.5 Hz), 6.49 (1 H, d, J 15.5 Hz), 6.24 (1 H, d, JllHz),5.78(lH,dd,Jlland3Hz),5.06(1H,dd,J8and3 Hz), 5.73 (2 H, m), 3.43 (1 H, dt, J 12 and 8 Hz), 2.89 (1 H, dd, J 17.5and 12 Hz), 2.60 (1 H, dd, J 17.5 and 8 Hz), 2.52 (2 H, br t), 1.58 (2 H, m), 1.28 (4 H, m), and 0.86 (3 H, t).(Found: M+, 352.1344. C,,H,,O,S requires M, 352.1344). 4- Ethoxycarbonyl-4-( 3-hydroxyoctenyl)-3a,7a-dihydro-4H-thiopyrano4,3-bfuran-2(3H)-one(9).-NaBH, (5 mg) Was added to the enones (8) (88 mg) in water (2 ml) and EtOH (4 ml). After 30 min, 2M HCl was added and the solution saturated with NaCl and then extracted with EtOAc. Concentration of the dried extract gave an oil which was flash chromatographed on silica gel eluting with hexane-EtOAc (1 : 1) to give the akohols (9) (57 mg), v,,,. 3 500, 1 785, and 1 735 cm-'; h,,,. 235 nm (E 5 200); 6, 6.24 (1 H, d, J 10.5 Hz), 6.05 (1 H, ddd, J 15.5, 5.5, and 3 Hz), 5.83 (1 H, d, J 15.5 Hz), 5.74 (1 H, dd, J 10.5 and 3 Hz),5.07(1 H,dd,J8and3Hz),5.76(2H,q,J7Hz),4.19(1H, m), 3.39 (1 H, dt, J 12 and 8 Hz), 2.87 (1 H, dd, J 17 and 12 Hz), 2.57 (1 H, ddd, J 17, 8, and 2 Hz), 1.68 (1 H, m), 1.52 (2 H, m), 1.28(9 H, m), and 0.87 (3 H, t, J7 Hz); m/z (ci, NH,) 372, 355, and 337.On oxidation with Mn0,-CCl,, the alcohols (9) were converted back into enones. 4-(3-Oxo-octylidene)-3a,7a-dihydro-4H-thiopyrano4,3-b-furan-2(3H)-one (13).-The alcohols (9) (64 mg) were dissolved in tetrahydrofuran (3 ml) and LiOH (50 mg) in water (2 ml) was J. CHEM. SOC. PERKIN TRANS. I 1988 17 and 8 Hz), 2.45 (2 H, t, J7 Hz), 1.53 (2 H, m), 1.23 (4 H, m), and 0.87 (3 H, t, J 7 Hz) (Found: M+, 280.1126. C,,H,,O,S requires M, 280.1 133). Oxidation ofthe Enones (13).-NaIO, (27 mg) Was added to the enones (13) (27 mg) in water (2 ml) and MeOH (1 ml).After 3 days the mixture was filtered and the filtrate saturated with NaCl and extracted with EtOAc. Concentration of the dried extract gave the ether (16) (13 mg) after purification by flash chromatography on silica gel eluting with pentane-Et,O (1: l), v,,,. 1790, 1750, and 1625 cm-'; A,,,. 222 nm (E 9 100); 6, 6.60 (1 H, d, J 16 Hz), 6.41 (1 H, d, J 16 Hz), 6.16 (1 H, d, J 10.5 Hz), 5.89 (1 H, dd, J 10.5 and 3 Hz), 5.26 (1 H, dd, J7.5 and 3 Hz), 3.34 (3 H, s), 3.02 (1 H, dt, J 12.5 and 8 Hz), 2.81 (1 H, dd, J 17 and 12.5 Hz), 2.56 (1 H, t, J7 Hz), 2.38 (1 H, dd, J 17 and 8 Hz), 1.61 (2 H, m), 1.30 (4 H, m), and 0.89 (3 H, t, J 7 Hz) (Found: M', 310.1239.C,,H,,O,S requires M, 310.1239). Reduction of the Enones (13).-NaBH, (21 mg) Was added to the enones (13) (122 mg) in EtOH (4 ml) and water (2 ml). After 1 h, 2~ HCl was added and the solution saturated with NaCl and extracted with EtOAc. Concentration of the dried extracts and flash chromatography (pentane-EtOAc, 2: 1) of the product gave the minor alcohol (14) (20 mg), v,,,, 1 775 cm-'; h,,,. 268 (E 6400), 6, 6.23 (1 H, d, J 10.5 Hz), 5.92 (1 H, td, J 8and2Hz),5.69(1H,dd, JlOSand2.5Hz),5.07(1 H,dm,J13 Hz), 3.92 (1 H, m), 3.66 (1 H, m), 2.90 (1 H, dd, J 17 and 13 Hz), and 2.65-0.88 (14 H) (Found: M+, 282.1292. C15H2,03S requires M, 282.1290) and the major alcohol (14) (69 mg), v,,,, 1 775 cm-'; h,,,. 266 nm (E 6 200); 6, 6.23 (1 H, d, J 10.5 Hz), 5.93 (1 H, m), 5.72 (1 H, dd, J 10.5 and 2.5 Hz), 5.02 (1 H, dm, J 7.5Hz),3.71(1 H,m),3.55(1H,dt,J12.5and7.5Hz),2.90(1H, ddd, J 17.5, 12.5, and 2 Hz), 2.52 (1 H, dd, J 17.5 and 8 Hz), and 7.54.9 (15 H); m/z (ci, NH,) 300.283.Oxidation of the separated alcohols with Jones' reagent gave single isomers of the enone (13) identical with those prepared previously. (Z)-6-4-Hydroxy-3-(3-hydroxyoctylidene)-3,4-dihydro-2H-added. After 14 h, the red solution was acidified with ~M,HC~, saturated with NaCl, and extracted with Et,O. The ether extracts were shaken with saturated aqueous Na,CO,, the basic extract acidified with 2~ HC1 and the solution extracted with Et,O. Drying and concentration of the Et,O solution gave the acids (10) (54 mg); 6,6.38 (1 H, d, J 10.5 Hz), 6.11 (1 H, dd, J 15 and 5.5 Hz), 5.93 (1 H, d, J 15 Hz), 5.71 (1 H, dd, J 10.5 and 3 Hz), and 5.14 (1 H, dt, J 8 and 3 Hz).Jones' reagent was added dropwise to the acids (10) (250 mg) in Me,CO (15 ml) at 0 "C until t.1.c. indicated disappearance of starting material. The mixture was filtered and the filtrate concentrated under reduced pressure, diluted with Et,O, and the solution shaken with 2~ HCI. T.1.c. showed one major component. The solution was heated under reflux for 2 h by which time the major product had been transformed into another. Concentration gave the ketones (13) (111 mg) as an oil,v,,,. 1 795 and 1 725 cm-'; A,,,. 268 nm (E 4 500). The two isomers could be separated by t.1.c. 4 elutions with hexane- EtOAc (3 : l).The more polar isomer was the major component, 6H6.21 (1 H, d, J 10.5 Hz), 6.07 (1 H, t, J6.5 Hz), 5.75 (1 H, dd, J 10.5and2.5Hz),5.13(1 H,dd,J8and3Hz),3.59(1 H,dt, J12.5 and 8 Hz), 3.42 (1 H, dd, J 19 and 7.5 Hz), 3.22 (1 H, dd, J 18.5 and 6 Hz), 2.90 (1 H, dd, J 17.5 and 12.5 Hz), 2.53 (1 H, dd, J 17.5and 8 Hz), 2.42 (1 H, t, J7.5 Hz), 1.56 (2 H, m), 1.24 (4 H, m), and 0.87 (3 H, t, J7 Hz) (Found: M', 280.1132. C,,H200,S requires M, 280.1 133). The minor component showed 6,6.25 (1 H, d, J 10 Hz), 6.00 (1 H, t, J 7.5 Hz), 5.71 (1 H, dd, J 10.5 and 2.5 Hz), 5.11 (1 H, br d, J8 Hz), 3.77 (1 H, dt, J 12.5 and 8 Hz), 3.32 (2 H, m), 2.92 (1 H, dd, J 17.5 and 12.5 Hz), 2.52 (1 H, dd, J thiopyran- l-yllhept-5-enoic Acid (15).-Bu',AlH In hexane (1~ solution; 1.4 ml) was added to the enones (13) (177 mg) in PhMe (20 ml) cooled to -78 "C under a N, atmosphere.After 3 h water (2 ml) was added and the cooling bath removed. 2~ HCl Was added, the solution saturated with NaCl, and the solution extracted with Et,O to give, after drying and concentration of the extract, the lactol(l61 mg). NaH (50 Dispersion in oil; 1 g) was washed with pentane under a N, atmosphere. Me,SO (20 ml) was added and the stirred suspension warmed, the temperature being kept below 60deg;C. After 4 h evolution of H, had ceased and the solution was cooled to ambient temperature. 5-Triphenylphosphonio- pentanoic acid bromide (880 mg) and Me,SO (5 ml) were stirred together and the 'dimsyl sodium' solution prepared above added dropwise (4.2 ml) to give a red solution of the ylide.The lactol (138 mg) in Me,SO (3 ml) was added to the ylide solution. After 12 h water was added and the solution extracted with EtOAc. The aqueous layer was taken to pH 6 with 2~ HCl and shaken with EtOAc. Drying and concentration of the latter extract gave an oil which was flash chromatographed on silica gel eluting with EtOAc to give the acids (15) (137 mg), vmax, 1 710 cm-'; 6, 6.12 (1 H, d, J 10 Hz), 5.83 (1 H, dm, J 10 Hz), 5.63 (1 H, t, J8 Hz), 5.44 (2 H, m), 4.78 (2 H, br s), 4.39 (1 H, m), 3.71 (1 H, m), and 2.70-4.9 (22 H, m); m/z (ci, NH,) 386, 367, 351, and 319. 4-(Dimethoxymethyl)-2,3,3a,7a-tetrahydro-4H-thiopyra~o-4,3-b.furan-2-01(24).-1.2~Bu',AlH In hexane (1.45 ml) was added to the lactone (17) (200 mg) in PhMe (20 ml) at -78 "C J.CHEM. SOC. PERKIN TRANS. I 1988 under a N, atmosphere. After 2 h, saturated aqueous Na,SO, (2 ml) was added and the cooling bath removed. Na,SO, Was added, the mixture filtered, and the residue washed with EtOAc. The dried extracts were filtered through a plug of silica gel and the silica gel eluted with Me2C0. Concentration of the eluates gave a 4 : 3 mixture of lactols (24) (1 74 mg), 6,6.18 and 6.14 (d, J 10.5 Hz), 5.89 and 5.81 (dd, J 10.5 and 3 Hz), 5.52 (d, J5 Hz), and 4.45 and 4.44 (d, J 5.5 Hz) (Found: M+, 232.0766. C,,H,,O,S required M, 232.0769). On oxidation with MnO,-CH,CI, the lactols (24) were con- verted into the lactone (1) in high yield.Methy1 ( Z)-6- 2 -Dime thoxymethyl- 3 -h ydroxy- 3,4 -dih ydro- 2H-thiopyrun-2-yllhept-5-enoate(22)-A 60 dispersion of NaH (225 mg) was washed with pentane under a N, atmosphere. Me,SO (6.5 ml) Was added and the mixture heated at 65 "C for 45 min. The solution was cooled to ambient temperature and 5-triphenylphosphoniopentanoicacid bromide (1.24 g) in Me,SO (3.5 ml) was added. The mixture was then stirred at ambient temperature for 45 min after which the lactols (24) (216 mg) in Me,SO (3 ml) were added. After 2.5 h, water (250 ml) was added and the solution saturated with NaCl and extracted with Et20 (100 ml). The aqueous phase was acidified to pH 4 with 2~ HCl and extracted with Et,O (4 x 100 ml).The dried extracts were concentrated and the residue triturated with EtOAc and the solid (Ph,PO) filtered off. The filtrate was concentrated and Et,O (20 ml) added followed by CH,N,- Et,O until esterification was complete. After removal of solvent the residue was flash chromatographed on silica gel eluting with pentane-Et,O to give the ester (22) (222 mg) as an oil, vmaX. 1725 cm-I; A,,,, 229 nm (E 4000); 6, (1 H, dd, J 10.2 and 1 Hz), 5.69 (1 H, dd, J 10.2 and 2.4 Hz), 5.45 (2 H, dm, J 8.5 Hz), 4.42 (1 H, s, J 7.5 Hz), 4.34 (1 H, m), 3.63 (3 H, s), 3.41 (3 H, s), 3.32 (3 H, s), 3.18 (1 H, dd, J7.5 and 4.5 Hz), 2.28 (2 H, t, J6 Hz), 2.3 (5 H, m), and 1.65 (2 H, m) (Found: Mf, 329.1419. C,,H2,0,S requires M, 329.1423). flash chromatographed eluting with pentane-Et,O to give the aldehyde (20C) (41 mg); v,,,. 1 725 and 1665 cm-'; 6, 9.63 (1 H,s),7.09(1H,dd,J10.5and2Hz),6.12(1H,d,J10.5Hz),5.58 (1 H, m), 5.39 (1 H, m), 3.78 (1 H, m), 3.66 (3 H, s), 2.86 (1 H, m), 2.58(1 H,m),2.31(3H,m),2.10(2H,m),and 1.69(2H,m);m/z (ci, NH,) 300, 283.Reaction of the aldehyde (20C) with SmC13-8H,0-HC(OMe),-MeOH regenerated the acetal (19C). 3-Mercuptopropionate Adduct of the Acetal (19C).-Methyl 3-mercaptopropionate (87 pl) and Pri,NEt (9 pl) were added to the ketone (19C) (86 mg) in Me,NCHO (1.4 ml). After 14 h, concentration under reduced pressure gave an oil which was flash chromatographed on silica gel eluting with pentane-Et,O to give the adduct (21C) (46 mg); v,,,, 1730 and 1 705 cm-'; 6H5.49 (1 H, m), 5.30 (1 H, m), 4.51 (1 H, dd, J 11.5 and 3 Hz), 4.39 (1 H, d, J2.5 Hz), 3.67 (3 H, s), 3.64 (3 H, s), 3.40 (3 H, s), 3.36 (3 H, s), 2.90 (3 H, m), 2.60 (6 H, m), 2.27 (3 H, t, J 7 Hz), 2.07 (2 H, m), and 1.64 (2 H, m) (Found: M', 448.1591.C20H32- 03,requires M, 448.1589). The other fraction isolated was (as judged by 'H n.m.r. spectroscopy) a 2: 1 mixture of starting material and a compound showing 6,4.65 (d, J 6 Hz), 4.3 1 (m), 3.63, 3.34, 3.33, and 3.13 (all s). 4-(E)-3-Oxo-octenyl-3a,7a-dihydro-4H-thiop~~rano4,3-b-furun-2(3H)-one (25).-Dimethyl (2-oxohepty1)phosphonate (76 1.11) in (MeOCH,), (1 ml) was added to NaH (50 dispersion in oil; 16 mg) in (MeOCH,), (1 ml) under a N, atmosphere. After 10 min, the aldehyde (18) (60 mg) in (MeOCH,), (4 ml) was added.After 30 min, water (10 ml) was added and the solution extracted with Et20 (10 ml). The Et,O solution was separated off, shaken with saturated brine, dried, and concentrated to give an oil. Chromatography of this on silica gel gave the enone (25) (50 mg), v,,,. 1 770 and 1700 cm-'; h,,,. 223 nm (E 12 0oO); 6, 6.82 (1 H, dd, J 15 and 6 Hz), 6.34 (1 H, d, J 15 Hz), 6.24 (1 H, d, J 10.5 Hz), 5.78 (1 H, dd, J 10.5and 3 Hz), 5.06 (1 H, dd, J8 and 3 Hz), 3.54 (1 H, d, J3 Hz), Methyl (Z)-6-(2-Dimethoxymethyl-3-oxo-3,4-dihydro-2H-3.16 (1 H, m), 2.89,(1 H, dd, J 17 and 12 Hz), 2.60 (1 H, dd, J 17 and 8 I-iz), 2.52 (2 H, t, J7 Hz), 1.68 (2 H, m), 1.28 (4 H, m), and thiopyran-2-yl)hept-5-enoute(19C).-The alcohol (22) (220 mg) in CH,CI, (5 ml) at -20 "C was treated with Collins' reagent (10 ml).After 35 min the mixture was diluted with Et,O (100 ml) and successively washed with IM NaOH (2 x 50 ml), IM HCI (2 x 20 ml), and saturated brine (25 ml). The dried extract was concentrated and the residue flash-chromatographed on silica gel eluting with pentane-Et,O to give the cis-ketone (19C) (177 mg),v,,,. 1 730 and 1 665 cm-'; h,,,. 309 nm; 6, 7.25 (1 H, dd, J 10 and 2 Hz), 6.06 (1 H, d, J 10 Hz), 5.52 (1 H, m), 5.40 (1 H, m), 4.42 (1 H, d, J 7 Hz), 3.64 (3 H, s), 3.40 (3 H, s), 3.35 (3 H, s), 3.27 (1 H, ddd, J7,2, and 2 Hz), 2.74 (1 H, m), 2.55 (1 H, m), 2.30 (3 H, t, J6.5 Hz), 2.11 (2 H, q, J6.5 Hz), and 1.67 (2 H, m); 6, 195.37 (s), 173.900 (s), 143.02 (d), 132.47 (d), 126.33 (d), 121.95 (d), 104.23 (d), 55.79 (q), 55.28 (q), 51.49 (q), 47.82 (d), 45.77 (d), 33.42 (t), 27.4 (t), 26.66 (t), 24.71 (t), 26.66 (t), and 24.71 (t).In addition, there were minor resonances at 133.37 and 126.95 for the E-alkene (cu. 7) (Found: M', 328.1345. C, ,H,,O,S requires M, 328.1344). The truns-ketone (19T) (9 mg) was also isolated; 6, 7.35 (1 H, d, J 10 Hz), 6.07 (1 H, dd, J 10 and 2 Hz), 5.34 (2 H, m), 4.67 (1 H, d, J8 Hz), 3.87 (1 H, m), 3.65 (3 H, s), 3.36 (3 H, s), 3.35 (3 H, s), 2.74 (1 H, m), 2.42 (2 H,m), 2.28 (2 H, m), 2.05 (2 H, m), and 1.67 (2 H, m). 0.86 (3 H, t, J7 Hz) (Found: M', 280.1 132. C, 5HZ003S requires M, 280.1133). The enone (25) (35 mg) was added to KOBu' (1 mg) in tetrahydrofuran (1 ml) and the red solution was stirred for 3 h. Water (5 ml) was added and the solution extracted with Et,O (5 ml). The dried extract was concentrated to give an oil which was flash chromatographed to give the P,y-unsaturated ketone (1 8 mg), which was identical with the major isomer prepared as described in Part 1. AcknowledgementsWe thank the S.E.R.C., I.C.I. Pharmaceuticals Division, and the Royal Society for financial support. References 1 C. C. Price and J. A. Pappalardo, J. Am. Chem. Sac., 1950, 72, 2613. 2 D. J. Cram, 'Fundamentals of Carbanion Chemistry,' Academic Press, New York, 1965, p. 201. 3 E. J. Corey, N. M. Weinshenker, T. K. Schaff, and W. Huber, J. Am. Chem. SOC.,1969,91, 5675. 4 S. Ohuchida, N. Hamanaka, and M. Hayashi, Tetrahedron,1983,24, 4273.Methyl (Z)-6-(2-Formyl-3-0~0-3,4-dihydro-2H-thiopyran-2-yl)hept-5-enoate (2OC).-Freshly distilled formic acid (1 ml) was 5 A. Gorgnes, Bull. SOC.Chim. Fr., 1974, 3-4(2), 529. added to the acetal (19C) (71 mg) in CH,C1, (2 ml). After 3 h, 6 S. Lane and R. J. K. Taylor, Tetrahedron Lett., 1985, 26, 2821. CH,Cl, (40 ml) was added and the solution shaken with saturated aqueous NaHCO, and then saturated brine. The dried CH,Cl solution was concentrated to give an oil which was Received 3rd February 1987; Paper 7/189
机译:J. CHEM. SOC. PERKIN 译.I 1988 硫甲酮的合成方法。Part 2.t Synthesis of Structural Isomers of Thiathromboxane A, Brian P. McDonald, Robert W. Steele, James K. Sutherland,“ and (in part) Bruce W. Leslie Chemistry Department, Victoria University of Manchester, M73 9PL Andrew Brewster I.C.J.PL C,Pharmaceuticals Division, Mereside, Alderle y Park, Macclesfield, Cheshire SK 7 0 4TG 单硫磷素 A2 的结构异构体 (15) 已由半酯制备 (1)。基本策略包括通过Michael加成引入“底部”侧链,内酯化,去除乙氧羰基,以及常规引入“顶部”侧链。描述了与已发表的二硫人心烷合成的链接。从第 1 部分可以清楚地看出,(1) 的衍生物的 N-氯琥珀酰亚胺内酯化在所需方向上需要硫代吡喃环的 C-2 被二取代。为此,我们研究了(1)与LiNPr'的反应,看看是否可以获得合成有用的二阴离子。该物质的氘化反应,然后与H,O交换,得到(2)的顺式电波混合物,通过质谱和'H n.m.r.光谱的组合,在C-2处显示其单氘化率约为80%。二阴离子与反应性烯丙基1溴化物反应得到(3)的立体异构体混合物的收率为69%。N-氯琥珀酰亚胺-CH,CI将酸(3)转化为y-内酯(6),收率为79%。这些结构遵循从这些化合物获得的光谱数据的特征模式。在第1部分中,注意到丙二酸酯(12)在碱性水解条件下的不稳定性,并与其二氢衍生物的稳定性进行了对比。酯(6)的直接水解表明,丙二酸(12)的不稳定性与C-2处除双键外的两个吸电子基团有关。现在,我们检查了相关侧链的引入,并表明(1)的二阴离子经过Michael加成和消除,与(E)-l-chloro-oct-l-en-3-one'一起得到烯酮(4)(60%)。结构与所得光谱数据一致。除了硫吡喃的典型吸收外,还观察到h,,,, 224 nm (E 10 OOO)、v,,,.1 680 cm-'和6、6.78和6.45 (d, J 15.5 Hz)证实了E-烯酮的存在。酸(4)与N-氯琥珀酰亚胺反应得到收率良好的产物,可分为主要馏分和次要馏分。主要部分似乎是单一化合物,可提供符合 y-内酯结构的光谱数据 (8),特别是特征性的“H n.m.r. 共振和 h,,,.的噻吡酮环和烯酮单元存在。C0,Et微量部分尚未完全表征,但'H n.m.r.和 R (1) R = H (2) R = 'H (3) R = CHZCH=CH2 (4)R = CHtCH(CO)(CHL),ME (5) R = CH=CHCH(OH)(CHZ),MesoR x (6) X = CO,Et, R =CH,CH=CH, (12) X = R = C0,Et (16) X = OMe, R = CH=CH(C0)(CH2),Me (7) X = COZH, R = CH2CH=CHz (8) X = C0,Et.R = CH(CO)(CHz),Me (9) X = C02Et, R = CH=CHCH(OH)(CH,),Me (10) X = C0,H , R = CH=CHCH(OH)(CH,),Me (11) X = COZH , R = CH=CHCH(OH)(CHL)4Me t 第 1 部分,前面的论文质谱表明存在 (8) 的异构体和烯酮可轻键的 HCl 加合物。由于难以分离这两种馏分,粗产物被用于进一步反应。根据我们之前的经验,我们无法在不破坏分子的情况下水解酯 (8) 也就不足为奇了,因为它在位置 2 有两个吸电子基团。用NaBH还原(8)的酮基,得到醇(9)(76%),可以用LiOH-H,O-四氢呋喃水解为酸(10)(91%)。用琼斯试剂氧化酸(10)后,得到含有极性和非极性部分的Et,O提取物;加热溶液将极性组分转化为非极性组分,并得到内酯x的Z,E混合物(13)。每种分离的异构体都给出了 i.r. 和 U.V.结果,[h,,,. 268 nm (E 4 500) 和 v,,,, 1 725 cm-I],这支持了结构分配:类似地,除了典型的吡喃硫代-呋喃酮共振外,还显示了主要异构体 6, 6.07 (1 H, t, J 7 Hz)、3.42(1 H,dd, J 19 和 7.5 Hz) 和 3.22 (1 H, dd, J 19 和 6.5 Hz),以及次要异构体 6、6.00 (1 H, t, J 7.5 Hz) 和 3.32 (2 H, m)。异构体的混合物用于进一步的实验。继续沿着计划的路线合成需要将P,y-不饱和酮转化为a$-$,还研究了乙烯缩醛的形成、酯的水解、脱羧氧化、缩醛的水解。内酯(13)的总产率相似,但序列的重现性不如上述。676不饱和异构体;这是我们一直无法做到的。将内酯 (13) 暴露于各种 0 和 N 中心碱基中,分子没有变化或破坏;同样,自由基介导的异构化不成功,用强碱异构化醇的尝试(14)也不成功。研究了自由基诱导的(11)脱羧,但没有成功。在该体系中,P,y-异构体在热力学上可能比a,P更稳定,就像在简单的硫代烯醇醚中一样;然而,在那里,平衡位置发生了巨大变化,有利于 ally1 异构体进入亚磺酸和砜.2 0 A OH (13) X = 0 (15) (14) X = H , OH 通过用 nz-氯过苯甲酸处理将化合物 (13) 转化为亚砜和砜的努力只产生了难以处理的混合物。化合物(13)与NaI0,-H,O-MeOH反应得到的产物是单一产物,根据光谱数据被指定结构(16)。很可能确实发生了硫氧化,但随后发生了 Pummerer 型反应。在这个阶段,人们认为值得将“顶部”侧链引入内酯 (13) 并检查产品的生物活性。使用常规方法,用2 mol的Bu',AlH还原内酯(13)得到乳醇,当与3 mol当量的Ph,PCH(CH,),CO,Na [例如NaCH,SOMe和Ph,6(CH 2)4-CO,HG]缩合时,得到酸(15)(70%);从制备方法来看,*原子处很可能存在非对映异构体。虽然我们无法获得令人满意的燃烧分析,但'H n.m.r.谱图和c.i.质谱图支持总结构。对兔主动脉和豚鼠回肠的生物测定确定(15)是一种弱血栓素A激动剂。我们现在转向第二种策略。乙缩醛(17)和醛(18)是合成二硫甲烷A的潜在中间体,其令人满意的制备方法在第1部分中进行了描述。这种转化首先需要引入两条侧链(有相当标准的方法),其次,将二氢硫代吡喃环转化为桥接硫杂环烷,在项目这一阶段开始时还没有既定的方法。然而,在工作过程中,小野制药小组发表了4二硫四心虫素A的合成,中间体(19T)和(21T),鼓励我们研究从内酯(17)合成酮(19T)。用Bu',AIH还原内酯(17),得到异构乳糖(24)的混合物,容易用MnO氧化回起始物质。使用Corey程序将乳醇(24)与源自5-三苯基膦代戊酸溴化物的磷烷缩合,得到羟基酸,羟基酸与CH,N,转化为酯(22)。酯(22)与Cr0,-C,H,N-CH,C1氧化,得到的产物可分为主要(81%)和次要(4%)馏分。主要馏分显示 h,,,, 309 nm,v,,,.1730 和 1665 cm-',以及图中所示的 H n.m.r. 耦合模式。这些结果与日本工人提供的顺侧链异构体信息一致(19C);这种立体化学是由他们根据 4Jof 2 J.CHEM. SOC. PERKIN TRANS. 分配的。I 1988 H (17) X = (OMe) (19)X = (OMe)2 C= R8, R'* cis (18) X = 0 (2O)X = 0 T = R*,dZtrans IH I C0,Me (21) OH OMe (241 2-30 6.06-2-74 92-55 图.Hz 介于 11-H 和 12-H 之间,并且根据第 1 部分中讨论的 X 射线结构并非完全明确。然而,通过从已建立的立体化学的内酯(17)制备(19C)来加强它。毛细管 g.1.c.结果表明,主要馏分含有两种化合物,比例为92:8。'H n.m.r.光谱没有表明杂质的性质;然而,n.m.r.光谱显示,除了6、133.4和127.0处的两次轻微吸收外,单个异构体的预期共振表明次要成分是E-烯烃异构体。分离出的微量部分的光谱数据与反式缩醛(19T)报告的光谱数据一致。由于血栓素 A 具有侧链反式,我们研究了在各种平衡条件下使酮 (19C) 异构化的可能性。令我们惊讶的是,我们无法大幅增加反式异构体的比例,这表明(19C)是热力学上更稳定的异构体。与NaOC2H,-2HOC2H,交换证实了这一点;'H n.m.r. 光谱表明,10-H、8-H 和 Me0 交换了毛细管 g.1.c。异构体比例无变化。通过推定烯醇酸盐的动力学质子化来改变异构体比例的尝试也没有成功,通过缩醛(19C)与HC0,H反应制备的醛(20C)的尝试也没有成功。I 1988年醛(20C)的测定证实,在最初的转化过程中没有发生异构化。Hamanaka 合成的下一阶段涉及将 HSCH、CH、CO、Me 添加到烯酮 (19T) 中,以得到硫化物 (21T) 以及少量其他异构体。将硫醇(由Pr',NEt催化)添加到顺式烯酮(19C)中得到加合物(40%),并伴有不变的起始材料和顺式烯酮和E-烯烃侧链。我们得到的加合物与Hamanaka小组报告的加合物不同;特别是在其'H n.m.r.光谱中,13-H是双峰6 4.39 (J 2.5 Hz)与6 ca. 2.90的质子耦合,而不是6 4.43 (J 4.1 Hz)耦合到6 3.52 (J4.3 Hz)。此外,1 l-H 是 6 4.51 的 dd(J 11.5 和 3.5 Hz),而 6 4.64(dd、J 8.7 和 4.7 Hz)是 dd。这些数据不允许将立体化学明确地分配给我们的加合物。然而,Pri2NEt 无法平衡异构体 (19C) 和 (3T) 以及烯酮 (19C) 从加合物 (21C) 的再生表明侧链是顺式的。'H N.m.r.光谱表明(21C)中存在赤道硫化物取代基,并且,如果缩醛是(19C)中的假轴向,则导致所示的相对立体化学。因此,Hamanaka 加合物 (21T) 具有跨侧链;然而,报告的 8-H、12-H J 值 (4.1 Hz) 与椅环构象中侧链的二赤道排列不一致。无论哪种情况,这都提出了Hamanaka加合物中的硫化物立体化学问题,从而提出了最终dithiathromboxane-A中的硫杂环烷环的问题。如果加合物 (21T) 具有侧链全轴和硫化物赤道,则硫杂环丁烷硫将反式为庚烯酸侧链。另一方面,如果环是扭曲构象,那么任何一种异构体都是可能的。将醛(18)与二-甲基(2-氧代六噻一)膦酸酯的标准缩合',烯酮(25)为预U l!5H11 0 &H (25) (26) 削皮。在与K0Bu'-四氢呋喃异构化时,将其转化为与第1部分所述制备的主要异构体相同的P,y-不饱和酮。由于据报道的二硫心盒烷A的激动剂(而不是理想的拮抗剂)活性,以及所描述的同异构化困难,这些方法被停止。完成这项工作后,Lane 和 Taylor6 表明,与 (19C) 相比,通过 (26C) 的 NaOMe-MeOH 异构化可以获得更有利的酮 (26C) 和 (26T) 的反式顺式比例。通过回收利用,可以获得反式加合物的优势。酮(26C)可能从(20C)或(25)获得。实验性的:将2-烯丙基-3-c~芳氧基甲基-2-乙氧羰基-3,6-二氢-2H-噻喃(3).--1.4~BuLi In 己烷(4.4ml)加入到*中,我们得到的镜面烯酮与'H n.m.r.基本一致。烯酮(3T)报告的数据,但10-H和8-H显示2 Hz的长程耦合。如果这些化合物确实相同,那么环系统就不能具有假定的半椅构象。677 Pr',NH(0.94ml)在四氢呋喃(5ml)中,在N气氛下冷却至-5“C。45分钟后,缓慢加入四氢呋喃(5ml)中的酸(1)(640mg)。将暗红色溶液在-10“C下搅拌1.5小时,然后加入ally1溴化物(0.5ml)。取出冷却浴,75分钟后加入2h1 HCl。将混合物用Et,O(2×50ml)萃取,并将提取物干燥,并浓缩得到油,在硅胶上用CHC1,-MeOH(19:1)洗脱后得到酸(3)(520mg)作为油,v,,,.1730 和 1710 厘米-';6、5.85(3 H,m)、5.09(2 H,m)、4.18(2 H,q)、3.05(3 H,m)、2.60(3 H,m)、2.45(1 H,m)和1.24(3 H,t)(发现:C,57.5;H, 6.8;S,11.9%;M+,270.0928。C,,H,,O,S 需要 C, 57.8;H, 6.7;S,11.9%;M,270.0926)。将4-烯丙基-4-乙氧羰基-3a,7a-二氢-4H-硫代吡喃并[4,3-b]呋喃-2(3H)-酮(6).-N-氯琥珀酰亚胺(42mg)加入到酸(3)(82mg)中的CH,Cl,(5ml)中。90分钟后,用饱和NaHCO水溶液振荡,干燥,浓缩,得到油状内酯(6)(64mg),vmaX.1 780和1 725 cm-';一个。237 nm (E 4 OW), 6H6.24 (1 H, d, J 11 Hz), 5.75 (2 H, m), 5.14 (3 H, m), 4.21 (2 H, q), 3.24 (1 H, dt, J 12 和 8.5 Hz), 2.81 (2 H, m), 2.65 (1 H, dd, J 14.5 和 8.5 Hz)、2.48 (1 H, dd, J 17 和 8.5 Hz) 和 1.25 (3 H, t) (发现: M', 268.0773.C,,HI6O4S 需要 M,268.0769)。将4-烯丙基-4-羧基-3a,7a-二氢-4H-硫代吡喃并[4,3-b~铀-2(3H)-酮(7).-LiOH(100mg)在水(5ml)中加入到酯(6)(73mg)中,在N气氛下在四氢呋喃(5ml)中。3 h后加入2~HCl,溶液用NaCl饱和,用Et,O萃取。将提取物用饱和NaHCO水溶液振荡,酸化,并用Et,O.干燥提取物的浓度得到酸(7)(58 mg)。两种酸通过t.1.c.分离。在二氧化硅HF254上使用CHC1,-AcOH(4:l)。极性较强的产物显示vmax.1775和1725 cm-';h,,,, 245 nm (E 4300);6, 6.28 (1 H, dd, J 11 Hz), 5.84 (1 H, m), 5.79 (1 H, dd, J 11 and 3 Hz), 5.21 (3 H, m), 3.27 (1 H, m) 和 2.75 (4 H, m) (发现: M', 240.0446.C, ,H,,O,S 需要 M, 240.0456)。极性较小的产物显示 v,,,, 1770 和 1725 cm-';一个。245 nm (4 700);6, 6.45 (1 H, d, J 9 Hz), 6.19 (1 H, dd, J 9 和 6.5 Hz), 5.95 (1 H, m), 5.30 (2 H, m), 4.62 (1 H, d, J6.5 Hz), 3.00 (1 H, dd, J 11 和 3.5 Hz), 2.85 (1 H, dd, J 17 和 4 Hz), 2.72 (1 H, dd, J 16 和 6 Hz), 2.57(1 H,dd,J 17和8 Hz)和2.36(1 H,dd,J 17和11 Hz)(发现:M',240.0454)。将3-羧甲基-2-乙氧羰基-2-(3-氧代辛烯基)-3,6-二氢-2H-硫代吡喃(4).-1.55~ BuLi 在己烷(2.75毫升)中加入到Pr',NH(0.6毫升)中的四氢呋喃(5毫升)中,在N下,气氛为-10“C。30分钟后,加入四氢呋喃(5ml)中的酸(1)(431mg)以产生沉淀。搅拌100分钟后,将混合物冷却至-78“C并加入(Me,N),PO(0.75ml)。1小时后,加入1-氯-辛-1-烯-3-酮(720mg)的四氢呋喃(3ml)溶液,形成暗红色溶液。在-78“C下3小时后,将溶液加热至环境温度过夜。加入2~HCl并用Et,O(3×30ml)萃取溶液。用饱和Na,CO水溶液反复振荡提取物,直到水不再变红。碱性提取物用2~HC1酸化,用EtOAc振荡。用饱和盐水摇动后,将干燥的EtOAc溶液浓缩,得到红色油状物,在硅胶上用己烷-Et,O-HC0,H(15:15:2)洗脱的快速色谱法得到烯酮(4)(497 mg)作为油,vmaX,1 735,1 710和1 680 cm-';一个。224 纳米 (10000);6、6.78(1 H,d,J 15.5 Hz)、6.45(1 H,d,J 15.5Hz)、5.96(1H,m)、5.81(1H,m)、4.23(2H,q)、3.19(1 H,m)、3.03(2 H,br s)、2.60(4 H,m)、1.68(2 H,m)、1.26(6H,m)和 0.86(3 H,t)。制备了(8)的甲酯的2,4-二硝基苯腙,熔点98-101“C(Found: C,54.7;H, 5.9;N, 10.2;小号,5.8。C,,H,,N,O,S 要求 C, 54.7;H, 5.9;N, 10.2;将4-乙氧基羰基-4-(3-氧代辛烯基)-3a,7a-二氢-4H-硫杂吡喃并[4,3-b]呋喃-2(3H)-酮(8).-N-氯琥珀酰亚胺(58mg)加入到酸(4)(1 38mg)的CH,Cl,(5ml)中。1 h后,滤去不溶性物质,减压除去溶剂。将残留物溶于Et,O中,并用饱和NaHCO水溶液振荡,干燥,浓缩,得到内酯(8)(120mg),v,,,.1 795、1 740、1705、1 685 和 1 620 cm-';h,,,.222 nm (E lOOOO), 6H6.82 (1 H, d, J 15.5 Hz), 6.49 (1 H, d, J 15.5 Hz), 6.24 (1 H, d, JllHz),5.78(lH,dd,Jlland3Hz),5.06(1H,dd,J8and3 Hz), 5.73 (2 H, m), 3.43 (1 H, dt, J 12 和 8 Hz), 2.89 (1 H, dd, J 17.5 和 12 Hz), 2.60 (1 H, dd、J 17.5 和 8 Hz)、2.52 (2 H, br t)、1.58 (2 H, m)、1.28 (4 H, m) 和 0.86 (3 H, t)。(找到:M+,352.1344。C,,H,,O,S 需要 M, 352.1344)。4-乙氧羰基-4-(3-羟基辛烯基)-3a,7a-二氢-4H-硫代吡喃并[4,3-b]呋喃-2(3H)-酮(9).-NaBH,(5mg)加入到烯酮(8)(88mg)的水(2ml)和EtOH(4ml)中。30 min后,加入2M HCl,溶液用NaCl饱和,然后用EtOAc萃取。将干燥提取物的浓度置于硅胶上用己烷-EtOAc(1:1)洗脱的硅胶上快速色谱,得到akohols(9)(57mg),v,,,.3 500、1 785 和 1 735 cm-';h,,,.235 纳米 (E 5 200);6、6.24(1 H、d、J 10.5 Hz)、6.05(1 H、ddd、J 15.5、5.5 和 3 Hz)、5.83(1 H、d、J 15.5 Hz)、5.74(1 H、dd、J 10.5 和 3 Hz)、5.07(1 H、dd、J8and3Hz)、5.76(2H,q,J7Hz)、4.19(1H、m)、3.39(1 H、dt、J 12 和 8 Hz)、2.87(1 H、 dd、J 17 和 12 Hz)、2.57(1 H、ddd、J 17、8 和 2 Hz)、1.68(1 H、m)、1.52(2 H、m)、1.28(9 H、m)和 0。87 (3 水平, t, J7 赫兹);m/z (ci, NH,) 372, 355, and 337.在Mn0,-CCl的氧化作用下,醇类(9)转化回烯酮。将4-(3-氧代-辛亚基)-3a,7a-二氢-4H-吡喃并[4,3-b]-呋喃-2(3H)-酮(13).-将醇(9)(64mg)溶于四氢呋喃(3ml)和LiOH(50mg)溶于水(2ml)中,J. CHEM. SOC. PERKIN TRANS.I 1988 17 和 8 Hz)、2.45 (2 H, t, J7 Hz)、1.53 (2 H, m)、1.23 (4 H, m) 和 0.87 (3 H, t, J 7 Hz) (发现: M+, 280.1126.C,,H,,O,S 需要 M, 280.1 133)。将烯酮(13).-NaIO(27mg)的氧化加入到烯酮(13)(27mg)的水(2ml)和MeOH(1ml)中。3天后,过滤混合物,滤液用NaCl饱和,并用EtOAc萃取。在硅胶上用戊烷-Et,O(1:l),v洗脱后,得到乙醚(16)(13mg)的干燥提取物的浓度,,,.1790 年、1750 年和 1625 厘米-';一个。222 纳米 (E 9 100);6、6.60(1 H、d、J 16 Hz)、6.41(1 H、d、J 16 Hz)、6.16(1 H、d、J 10.5 Hz)、5.89(1 H、dd、J 10.5 和 3 Hz)、5.26(1 H、dd、J7.5 和 3 Hz)、3.34(3 H、s)、3.02(1 H、dt、J 12.5 和 8 Hz)、2.81(1 H、dd、 J 17 和 12.5 Hz)、2.56(1 H、t、J7 Hz)、2.38(1 H、dd、J 17 和 8 Hz)、1.61(2 H、m)、1.30(4 H、m)和 0.89(3 H、t、J 7 Hz)(发现:M',310.1239.C,,H,,O,S 需要 M,310.1239)。还原烯酮(13).-NaBH,(21mg)加入到烯酮(13)(122mg)的EtOH(4ml)和水(2ml)中。1 h后,加入2~HCl,溶液用NaCl饱和,用EtOAc萃取。将干燥提取物的浓度和快速色谱法(戊烷-EtOAc,2:1)得到微醇(14)(20毫克),v,,,, 1 775 cm-';h,,,.268 (E 6400)、6、6.23 (1 H, d, J 10.5 Hz)、5.92 (1 H, td, J 8and2Hz)、5.69(1H,dd, JlOSand2.5Hz)、5.07(1 H,dm,J13 Hz)、3.92 (1 H, m)、3.66 (1 H, m)、2.90 (1 H, dd, J 17 和 13 Hz) 和 2.65-0.88 (14 h) (发现: M+, 282.1292.C15H2,03S需要M,282.1290)和主要醇(14)(69mg),v,,,,1 775 cm-';h,,,.266 纳米 (E 6 200);6、6.23(1 H、d、J 10.5 Hz)、5.93(1 H、m)、5.72(1 H、dd、J 10.5 和 2.5 Hz)、5.02(1 H、dm、J 7.5Hz)、3.71(1 H,m)、3.55(1H、dt、J12.5 和 7.5Hz)、2.90(1H、ddd、J 17.5、12.5 和 2 Hz)、2.52(1 H、dd、J 17.5 和 8 Hz)和 7.54.9(15 H);m/z (ci, NH,) 300.283.用Jones试剂氧化分离的醇,得到与先前制备的烯酮(13)相同的单异构体。(Z)-6-[4-羟基-3-(3-羟基亚辛基)-3,4-二氢-2H-添加。14 h后,红色溶液用~M,HC~酸化,NaCl饱和,Et,O萃取。用饱和Na,CO水溶液振荡乙醚提取物,碱性提取物用2~HC1酸化,溶液用Et,O萃取,干燥浓缩Et,O溶液,得到酸(10)(54 mg);6,6.38(1 H,d,J 10.5 Hz)、6.11(1 H、dd、J 15 和 5.5 Hz)、5.93(1 H、d、J 15 Hz)、5.71(1 H、dd、J 10.5 和 3 Hz)和 5。14(1 H、dt、J 8 和 3 Hz)。将Jones试剂在0“C下滴加到Me,CO(15ml)中的酸(10)(250mg)中,直至t.1.c。表明起始材料消失。将混合物过滤,滤液减压浓缩,用Et,O稀释,溶液用2~HCI振摇。T.1.c.显示了一个主要组成部分。将溶液在回流下加热2小时,此时主要产物已转化为另一种产物。浓度得到酮(13)(111mg)作为油,v,,,.1 795 和 1 725 cm-';一个。268 纳米 (E 4 500)。两种异构体可以通过t.1.c.分离。[用己烷-EtOAc(3:l)洗脱4次]。主要成分为6H6.21(1 H,d,J 10.5 Hz),6.07(1 H,t,J6.5 Hz),5.75(1 H,dd,J 10.5和2.5Hz),5.13(1 H,dd,J8和3Hz),3.59(1 H,dt,J12.5和8 Hz),3.42(1 H,dd,J 19和7.5 Hz),3.22(1 H,dd,J 18.5和6 Hz), 2.90 (1 H, dd, J 17.5 和 12.5 Hz)、2.53 (1 H, dd, J 17.5 和 8 Hz)、2.42 (1 H, t, J7.5 Hz)、1.56 (2 H, m)、1.24 (4 H, m) 和 0.87 (3 H, t, J7 Hz) (发现: M', 280.1132.C,,H200,S 需要 M, 280.1 133)。次要分量显示 6,6.25 (1 H, d, J 10 Hz)、6.00 (1 H, t, J 7.5 Hz)、5.71 (1 H, dd, J 10.5 和 2.5 Hz)、5.11 (1 H, br d, J8 Hz)、3.77 (1 H, dt, J 12.5 和 8 Hz)、3.32 (2 H, m)、2.92 (1 H, dd, J 17.5 和 12.5 Hz), 2.52(1H,dd,J噻喃-l-庚基-5-烯酸(15).-Bu',AlH在己烷(1~溶液;1.4ml)加入到烯酮(13)(177mg)中,在PhMe(20ml)中,在N气氛下冷却至-78“C。3小时后,加入水(2ml)并除去冷却浴。加入2~HCl,溶液用NaCl饱和,溶液用Et,O萃取,干燥浓缩后得到乳醇(l61 mg)。NaH(50%油中分散体;1g)在N气氛下用戊烷洗涤。加入Me,SO(20ml),加热搅拌悬浮液,温度保持在60°C以下。 4 h后,H的析出停止,溶液冷却至环境温度。将5-三苯基膦基-溴戊酸(880mg)和Me,SO(5ml)搅拌在一起,滴加上述制备的“二甲酰钠”溶液(4.2ml),得到亚利德的红色溶液。将Me,SO(3ml)中的乳醇(138mg)加入到酰化物溶液中。12小时后加入水并用EtOAc萃取溶液。将水层用2~HCl加热至pH 6,并用EtOAc振荡。干燥并浓缩后一种提取物得到油,在硅胶上用EtOAc洗脱得到酸(15)(137 mg),vmax,1 710 cm-';6、6.12(1 H,d,J 10 Hz)、5.83(1 H,dm,J 10 Hz)、5.63(1 H,t,J8 Hz)、5.44(2 H,m)、4.78(2 H,br s)、4.39(1 H,m)、3.71(1 H,m)和 2.70-4.9(22 H,m);m/z (ci, NH,) 386、367、351 和 319。4-(二甲氧基甲基)-2,3,3a,7a-四氢-4H-硫代吡喃~o-[4,3-b].呋喃-2-01(24).-1.2~Bu',AlH In hexane (1.45ml)加入到内酯(17)(200mg)中的PhMe(20ml)中,浓度为-78“C J.CHEM. SOC. PERKIN TRANS.I 1988 在 N 大气层下。2 h后,加入饱和Na,SO水溶液(2 ml)并除去冷却浴。加入Na,SO,过滤混合物,残余物用EtOAc洗涤。将干燥的提取物通过硅胶塞过滤,并用Me2C0洗脱硅胶。洗脱液的浓度为4:3的乳醇(24)(1 74 mg)、6,6.18和6.14(d,J 10.5 Hz)、5.89和5.81(dd,J 10.5和3 Hz)、5.52(d,J5 Hz)和4.45和4.44(d,J 5.5 Hz)(发现:M+,232.0766。C,,H,,O,S 需要 M,232.0769)。用MnO,-CH,CI氧化后,乳醇(24)被高产率转化为内酯(1)。甲基1(Z)-6-[2-二角硫氧基甲基-3-Hydroxy-3,4-二氢-2H-硫代吡喃-2-基庚-5-烯酸酯(22)-A 60%的NaH分散体(225mg)在N气氛下用戊烷洗涤。加入Me,SO(6.5ml)并将混合物在65“C下加热45分钟。将溶液冷却至环境温度,加入5-三苯基膦代戊酸溴化物(1.24克)的Me,SO(3.5毫升)溶液。然后将混合物在环境温度下搅拌45分钟,然后加入Me,SO(3ml)中的乳醇(24)(216mg)。2.5小时后,加入水(250ml),溶液用NaCl饱和,并用Et20(100ml)萃取。将水相用2~HCl酸化至pH 4,并用Et,O(4×100ml)萃取。将干燥的提取物浓缩,残余物用EtOAc研磨,滤去固体(Ph,PO)。将滤液浓缩并加入Et,O(20ml),然后加入CH,N,-Et,O直至酯化完成。除去溶剂后,将残留物在硅胶上用戊烷-Et,O洗脱,得到酯(22)(222mg)作为油,vmaX。1725厘米-I;A,,,, 229 nm (E 4000);6、(1 小时、dd、J 10.2 和 1 赫兹)、5.69(1 小时、dd、J 10.2 和 2.4 赫兹)、5.45(2 小时、分米、J 8.5 赫兹)、4.42(1 小时、秒、J 7.5 赫兹)、4.34(1 小时、米)、3.63(3 小时、秒)、3.41(3 小时、秒)、3.32(3 小时、秒)、3.18(1 小时、dd、J7.5 和 4.5 赫兹)、 2.28 (2 H, t, J6 Hz), 2.3 (5 H, m) 和 1.65 (2 H, m) (发现: Mf, 329.1419.C,,H2,0,S 需要 M, 329.1423)。用戊烷-Et,O洗脱得到醛(20C)(41mg);v,,,.1 725 和 1665 cm-';6、9.63(1 H,s)、7.09(1H,dd,J10.5and2Hz)、6.12(1H,d,J10.5Hz)、5.58(1 H,m)、5.39(1 H,m)、3.78(1 H,m)、3.66(3 H,s)、2.86(1 H,m)、2.58(1 H,m)、2.31(3H,m)、2.10(2H,m)和1.69(2H,m);m/z (ci, NH,) 300, 283.醛(20C)与SmC13-8H,0-HC(OMe)-MeOH反应生成缩醛(19C)。将3-巯基丙酸酯缩醛(19C)的加合物-3-巯基丙酸甲酯(87 pl)和Pri,NEt(9 pl)加入到Me,NCHO(1.4 ml)的酮(19C)(86 mg)中。14 h后,减压浓缩得到油,在硅胶上用戊烷-Et,O洗脱,得到加合物(21C)(46mg);v,,,, 1730 和 1 705 cm-';6小时5分。49 (1 H, m), 5.30 (1 H, m), 4.51 (1 H, dd, J 11.5 and 3 Hz), 4.39 (1 H, d, J2.5 Hz), 3.67 (3 H, s), 3.64 (3 H, s), 3.40 (3 H, s), 3.36 (3 H, s), 2.90 (3 H, m), 2.60 (6 H, m), 2.27 (3 H, t, J 7 Hz), 2.07 (2 H, m)和1.64(2 H,m)(发现:M',448.1591.C20H32-03,需要M,448.1589)。分离出的另一部分是(根据'H n.m.r.光谱法判断)起始材料和化合物的2:1混合物,显示6,4.65(d,J 6 Hz),4.3 1(m),3.63,3.34,3.33和3.13(均为s)。将4-[(E)-3-氧代辛烯基]-3a,7a-二氢-4H-噻吩~~rano[4,3-b]-呋喃-2(3H)-酮(25).-(2-氧代六噻吩1)膦酸二甲酯(76 1.11)在(MeOCH,),(1ml)中加入到NaH(50%油中分散体;16mg)在(MeOCH,),(1ml)中,在N气氛下。10分钟后,加入醛(18)(60mg)在(MeOCH),(4ml)中。30分钟后,加入水(10ml)并用Et20(10ml)提取溶液。分离出Et,O溶液,用饱和盐水振摇,干燥,浓缩,得油。在硅胶上对此进行色谱分析,得到烯酮(25)(50mg),v,,,.1 770 和 1700 cm-';h,,,.223 纳米 (E 12 0oO);6、6.82(1 小时、dd、J 15 和 6 赫兹)、6.34(1 小时、d、J 15 赫兹)、6.24(1 小时、d、J 10.5 赫兹)、5.78(1 小时、dd、J 10.5 和 3 赫兹)、5.06(1 小时、dd、J8 和 3 赫兹)、3.54(1 小时、d、J3 赫兹)、甲基 (Z)-6-(2-二甲氧基甲基-3-氧代-3,4-二氢-2H-3.16 (1 小时、米)、 2.89,(1 H,dd,J 17 和 12 Hz),2.60(1 H,dd,J 17 和 8 I-iz),2.52(2 H,t,J7 Hz),1.68(2 H,m),1.28(4 H,m)和噻喃-2-基)庚-5-烯(19C)。-将醇(22)(220mg)在CH,CI(5ml)中的-20“C用柯林斯试剂(10ml)处理。35分钟后,将混合物用Et,O(100ml)稀释,并依次用IM NaOH(2×50ml)、IM HCI(2×20ml)和饱和盐水(25ml)洗涤。将干燥的提取物浓缩,并将残留物在硅胶上用戊烷-Et,O洗脱,得到顺式酮(19C)(177mg),v,,,.1 730 和 1 665 cm-';h,,,.309纳米;6、7.25(1 小时、dd、J 10 和 2 赫兹)、6.06(1 小时、d、J 10 赫兹)、5.52(1 小时、米)、5.40(1 小时、米)、4.42(1 小时、天、J 7 赫兹)、3.64(3 小时、秒)、3.40(3 小时、秒)、3.35(3 小时、秒)、3.27(1 小时、滴点、J7.2 和 2 赫兹)、2.74(1 小时、 m)、2.55(1 H,m)、2.30(3 H,t,J6.5 Hz)、2.11(2 H,q,J6.5 Hz)和 1.67(2 H,m);6、195.37(s)、173.900(s)、143.02(d)、132.47(d)、126.33(d)、121.95(d)、104.23(d)、55.79(q)、55.28(q)、51.49(q)、47.82(d)、45.77(d)、33.42(t)、27.4(t)、26.66(t)、24.71(t)、26.66(t)和24.71(t)。此外,E-烯烃(cu.7%)在133.37和126.95处有轻微的共振(发现:M',328.1345。C, ,H,,O,S 需要 M, 328.1344)。还分离出耳轴酮 (19T) (9 mg);6、7.35(1 小时、天、J 10 赫兹)、6.07(1 小时、日程、J 10 和 2 赫兹)、5.34(2 小时、米)、4.67(1 小时、天下、J8 赫兹)、3.87(1 小时、米)、3.65(3 小时、秒)、3.36(3 小时、秒)、3.35(3 小时、秒)、2.74(1 小时、米)、2.42(2 小时、米)、2.28(2 小时、米)、2.05(2 小时、 m)和1.67(2 H,m)。0.86 (3 H, t, J7 Hz) (发现: M', 280.1 132.C,5HZ003S 需要 M,280.1133)。将烯酮(25)(35mg)加入到KOBu'(1mg)的四氢呋喃(1ml)中,并将红色溶液搅拌3小时。加入水(5ml)并用Et,O(5ml)提取溶液。将干燥的提取物浓缩得到油,该油进行快速色谱,得到P,y-不饱和酮(1 8mg),其与第1部分所述制备的主要异构体相同。致谢我们感谢 S.E.R.C.、I.C.I. 制药部和英国皇家学会的财政支持。参考文献 1 C. C. Price and J. A. Pappalardo, J. Am. Chem. Sac., 1950, 72, 2613.2 D. J. Cram,“碳离子化学基础”,学术出版社,纽约,1965年,第201页。3 E. J. Corey, N. M. Weinshenker, T. K. Schaff, and W. Huber, J. Am. Chem. SOC.,1969,91, 5675.4 S. Ohuchida, N. Hamanaka, and M. Hayashi, Tetrahedron,1983,24, 4273.(Z)-6-(2-甲酰基-3-0~0-3,4-二氢-2H-噻喃-2-基)庚-5-烯酸甲酯(2OC).-新鲜蒸馏的甲酸(1ml)为5 A. Gorgnes, Bull.SOC的。奇姆。Fr., 1974, 3-4(2), 529.加入乙缩醛(19C)(71mg)中的CH,C1,(2ml)。3 小时后,6 S. Lane 和 R. J. K. Taylor,Tetrahedron Lett.,1985,26,2821。加入CH,Cl,(40ml)并用饱和NaHCO水溶液摇匀,然后用饱和盐水。将干燥的CH,Cl溶液浓缩,得到油,1987年2月3日收到;文件7/189

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号