首页> 外文期刊>journal of chemical physics >Potential Energy Functions for Diatomic Molecules
【24h】

Potential Energy Functions for Diatomic Molecules

机译:Potential Energy Functions for Diatomic Molecules

获取原文
           

摘要

The usual Morse functions are determined from the energy of dissociation, the equilibrium separation of the nuclei, and the fundamental vibration frequency. Two additional spectroscopic constants, &ohgr;exeand &agr;e, are available for most of the common diatomic molecules and permit us to add a two‐parameter correction term to the Morse curve. Both the potentialV/D=(1−e−x)2+cx3(1+bx)e−2xand the extended Morse curve of the Coolidge, James and Vernon type,V/D=C2(1−e−x)2+C3(1−e−x)3+C4(1−e−x)4agree with accurate potentials in those cases where they are known. Herex= 2&bgr;(r—re)/re. The constants for the first of these potentials are easy to evaluate and are given for 25 common diatomic molecules. With only a few exceptions, the improved potentials lie above the Morse curves and the corrections for moderately large internuclear separations may amount to ten percent of the energy of dissociation. Our treatment is based on the work of Dunham and the analysis of Coolidge, James and Vernon.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号