首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >1,2-, 1,3- and 1,4-Photocycloaddition modes on the naphthalene ring
【24h】

1,2-, 1,3- and 1,4-Photocycloaddition modes on the naphthalene ring

机译:萘环上的1,2-、1,3-和1,4-光环加成模式

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. soc. PERKIN TRANS. I 1992 1,2-, 1,3-and 1,4-Photocycloaddition Modes on the Naphthalene Ring NataSa ZupaneiC and Boris Sket Department of Chemistry, University of Ljubljana, Slovenia, Yugoslavia The photochemical reaction of octafluoronaphthalene and indene results in all three cycloaddition modes, i.e., 1,2-, 1,3-and 1,4-cycloaddition take place. The photochemistry of benzene involves photorearrangement cyclobutane ring and an unti orientation of the fluorine and and photosubstitution, as well as 1,2-, 1,3- and 1,4-photocyclo- addition reactions, and it has been studied and reviewed in detail. The photochemical behaviour of naphthalene is quite different from benzene. Simple naphthalenes do not photo-rearrange to Dewar naphthalene or naphthvalene. The 1,2- and I ,4-photocycloaddition reactions are preferred reaction modes in the case of photochemical reactions of naphthalenes and alkenes, but 1Jadditions of alkenes, so important in benzene photochemistry, are seldom observed with naphthalenes.2 Very few publications relating to photocycloaddition reactions of octafluoronaphthalene have appeared, in which only reactions with conjugated dienes have been ~tudied.~ Photocycloaddition reactions of naphthalene and some acetylene derivatives result in the 1,2- and 1 ,4-cycloaddition modes followed by a secondary rearrangement or intramolecular cycloaddition leading to the final product^.^ Previously, we have found that photoaddition of indene and hexafluorobenzene results in the formation of the cis-syn-cis 2 + 21 cycl~adduct.~We now report that under photo-chemical conditions, octafluoronaphthalene reacts with indene forming the corresponding 1,2-, 1,3-and 1,4-~ycloadducts.A cyclohexane solution of indene and octafluoronaphthalene was irradiated at 300 nm for 70 h. The crude reaction mixture was analysed by I9F NMR spectroscopy and it was determined that the conversion of the initial naphthalene was 78"/, with the formation offour products in the relative ratio of3:4:5:6 being 39: 16: 10:35 (Scheme 1). The mixture was separated by column chromatography (neutral A120,, W 200), and the crude isolated products were crystallised from methanol. The structure of the products was determined on the basis of their spectroscopic data and, for compound 3, also by X ray analy~is.~ The mass spectrum of product 3 mi.504 (M'), 388 (M' -C,H,), 272 (M + -2 x C,H,) and base peak at tn/z 116 (C,H,) indicates that the 2: 1 adduct of indene and octafluoronaphthalene was formed. The adduct shows no IR absorption in the region of 1700-1 760 cm-' which means that no isolated -CF=CF- group is present and that both indene rings are bound to the same ring of the octafluoronaphthalene by 2 + 23 cycloaddition. The stereochemistry of adduct 3 was determined by 'H and '"F NMR spectra using also the results of COSY and HETCOR experiments. The 19F NMR spectrum shows, in addition to signals corresponding to the fluorine atoms bonded to the aromatic carbon atoms, also signals at 6 -196.3 and -177.6, indicating an mii disposition of fluorine and hydrogen atoms in the cyclobutane ring,' while the signals at 6 -152.0 and -150.0 correspond to syn oriented fluorine and hydrogen atoms in the second cyclobutane ring5 (Table 1).The signals in the 'H NMR spectrum of the compound 3 at 6 4.0 and 4.2, containing also the coupling constants J 16.5 and 22 Hz, corresponding to the coupling of a fluorine and a hydrogen atom in a .ynposition, and the signals at 0 3.0 and 3.9, containing also a small coupling constant (less than 3 Hz), corresponding to the coupling of a fluorine and a hydrogen atom in an unti position, also indicate a .s.ivi orientation of the fluorine and hydrogen atoms in one hydrogen atoms in another.The structure of product 3 was also confirmed by COSY and HETCOR experiments and by X ray analysis. Product 4 (Scheme 1) shows the same molecular peak and very similar fragmentations in the mass spectrum as product 3. The absence of the vibration of an isolated -CF=CF- group in its IR spectrum indicates that the structure of product 4 must be closely related to product 3. The 'H NMR spectrum of compound 4 shows two signals at 6 4.0 and 4.3, which are nearly the same as the signals in the 'H NMR spectrum of compound 3, i.e., signals that correspond to the hydrogen atoms in the cyclobutane ring having a sjw orientation to the fluorine atoms bonded in the same ring5 Instead of the signals at 6 3.6 and 3.9 observed in the 'H NMR spectrum of compound 3, there are two signals in the 'H NMR spectrum of compound 4, at 6 3.4 + aFwFF FF F cycbhexane 1-300nrn 1 F F + 2 hv indene F 6 + Scheme I 180 Table 1 "F NMR SPectroscoPy data for the Photoproducts of octafluoronaphthalene and indene Compound Chemical shift (ppm)* ~~ ~ 3 -196.3 (m, I F, F-2), -177.6 (m, 1 F, F-I),-158.1 (m,1 F.aromatic F), -150.7 (m, 1 F, aromatic F), -137.3 (m. 1 F, aromatic F), -136.2 (m, 1 F. aromatic F), -152.0 (tm, 1 F, F-3) and -150.0(m, 1 F,F-4) 4 -175.1(m,lF,F-3),-172.2(m,lF,F-2),-152.4(m,2F, aromatic Fs), -136.5(m, 1 F, aromatic F), -131.5 (m, I F, aromatic F), -149.1 (m,I F, F-1) and -146.7 (m, 1 F, F-4) 5 -196.5 (d, I F, F-I),-195.1 (dd, 1 F, F-4), -154.7 (m,2 I;,aromatic Fs), 154.7 (m, 2 F, aromatic Fs) and -148.4 (m, 2 F, F-2, F-3) 6 -222.4 (m, 1 F, cyclopropyl F), -209.1 (m, 1 F, cyclopropyl F), -190.3 (m, I F, cyclopropyl F). -159.9 (d, I F, F-I), -152,7(m,I F,aromaticF),-150.9(m, I F, aromatic F), -144.9 (m, 1 F.aromatic F) and -141.4(m, I F, aromatic F) * Solvent, CDCl,; internal reference, CFCl,. and 4.5, showing also the coupling constant 16 Hz which again indicates a sjn orientation of hydrogen and fluorine atoms in the second cyclobutane ring of product 4. The chemical shifts and coupling constants observed in the I9F NMR spectrum of compound 4 (Table 1) (no signals for fluorine atoms in an anti position with hydrogen atoms were observed) also demonstrate the sjw orientation in both cyclobutane rings.The structure of compound 5 was also determined on the basis of its spectroscopic data. In the mass spectrum, the molecular peak in/: 388 corresponds to a 1 : 1 adduct of octafluoronaphthalene and indene. IR absorption (ltmax1755 cm-') indicates the presence of a -CF=CF- double bond which is not in a conjugate position to the aromatic system. The signals at 6 4.3 and 3.5 show a coupling constant (J 10 Hz), which indicates their cis position to each other, as well as through space coupling with the fluorine atoms bonded to the double bond (JFH10 Hz). This demonstrates that product 5 (Scheme 1) is a 1,4-cycloadduct with an encio orientation of the indan ring. The 1,4-addition mode can also be determined on the basis of the I9F NMR spectrum of compound 5 in which were observed, in addition to signals for aromatic fluorine atoms, two signals at S -196.5 and -195.1 corresponding to the fluorine atoms bonded to saturated carbon atoms, and a signal at 6 -148.4 of the two fluorine atoms at the double bond (Table 1).8 The I3C, COSY and HETCOR measurements were also in accordance with the structure proposed.Compound 6 has a molecular peak at rni: 388 (1 : 1 adduct), but the fragmentations are different from those of compound 5. There is no vibration of the isolated -CF=CF- group in the IR spectrum of compound 6, but in its I9F NMR spectrum, there are three signals in addition to others, at 6 -222.4, -209.1 and -190.3 corresponding to the fluorine atoms bonded to the saturated carbon atoms of the cyclopropane ring (Table l).8.9 On the basis of the data mentioned and from COSY and HETCOR measurements, it was proposed that product 6 is a 1,3-adduct of octafluoronaphthalene and indene.To determine if the 1,3-adduct is formed as a primary photochemical product or by a rearrangement from the 1,4-adduct, a cyclohexane solution of product 5 was irradiated under the same reaction conditions as mentioned. No transformation into 1,3-adduct was observed. From the results obtained it was be concluded that 1,2-c~rztko-, and 1,4-~~1~t/o-adducts1.3-~~tk0-were the primarily formed products. The cw/o attack can be explained by maximum over- lapping of the x-systems of the reactants and was determined by X ray analysis' of product 3 and from 'H and "F NMR spectra of product 5.The compounds 3 and 4 were formed from the J. CHEM. SOC. PERKIN TRANS. I 1992 primarily formed 2 + 21 ewtko adduct 2 by an c~nckoor ('.YO attack of an indene molecule to the double bond in this dihydronaphthalene derivative (2, Scheme 1). It is, as far as we know, the first example observed in reactions ofnaphthalene ring and alkene in which 1,2-, 1,3- and 1,4-cycloaddition takes place. The photochemical reactions of octafluoronaphthalene with some other cycloalkenes (such as 1,2-dihydronaphthalene, cyclopentene and norbornene) and some substituted acetylenes (such as 1 -phenylprop-1-yne and dimethyl acetylenedi-carboxylate) were also studied. It was determined that in all cases the conversion of octafluoronaphthalene was very low (less than 50,)) which made it impossible to isolate any products formed.From the results obtained, it can be concluded that the AIP rule which is based on the difference between the ionisation potentials of arene and olefin, as proposed by Bryce-Smith t't a/.,"as well as the correlations between the selectivities and the free enthalpies of electron transfer (the AG rule) l1 cannot be used to predict the mode of photochemical reaction in octa-fluoronaph t halene. Experimental Octafluoronaphthalene (1 mmol) and indene (2 mmol) were dissolved in cyclohexane (16 cm3). The solution was irradiated at room temperature for 70 h with 300 nm lamps in a Rayonet Photochemical Chamber reactor.The solvent was evaporated under reduced pressure and methanol (2 cm3) was added to the crude reaction residve. The white crystalline compound that precipitated was filtered off and recrystallised from methanol to give compound 3 (m.p. 243-244 'C) (Found: M +, 504.1 10. Calc. for C~BH~~F,:M, 504.1124); 111iz 504 (M', lo-2:,), 272 (31 x lo-'), 117(11), 116(100)and 115(18). The filtrate which contained octafluoronaphthalene and com- pounds 4,5 and 6 was separated using column chromatography (Al,03 W 200, neutral, mobile phase light petroleum) and the crude products were crystallised from methanol. Compound 4, m.p. 194-197 'c (Found: M+, 504.1 13. Cak. for C2,H16F8: M, 504.1 124); nii: 504 (M + ,0.6"1~),272 ( lo), 1 17 ( 1 1), 1 16 ( 100)and 115 (18).Compound 5 m.p. 148-150 -C (Found: M+, 388.050. Calc. for C,,H,F,: M, 388.0498); nil: 388 (Mf, 2 x 272 (9,117 (1 l), 116 (100) and 115 (27). Compound 6 m.p. 133- 135 C (Found: M+, 388.050. Calc. for C,,H,F,: M, 388.0498); nz/: 389 (M' + 1,0.59;), 388 (M +,2), 272 (8), 148 (lo), 147 (86), 146 (14), 145 (23), 1 17 ( 1 1), 1 16 ( 100) and 1 15 (27). References t D. Bryce-Smithand A. Gilbert. 7i'ti.~ilic'r/r.oii, 1976,32, 1309; 1977, 33, 1633. 2 J. J. McCullough,Chcni. Rcr., 1987. 87. 8 1 1. 3 J. Libman, J. Chm. Soc.. Climi. Cotwiitrii.. 1976, 361: J. Libman, Z. Ludmer, B. Lourie and V. Yakhot, J. Chcwi. Rc.v.(S),1978, 472: (M), 1978, 5557. 4 E. Grovenstein. Jr., T. C. Campbell and T. Shibata. J. Org. Clieni.. 1969.34,24 18: T. Teitei, D. Wells and W. H. F. Sasse, Ausi.J. Cheni., 1975, 28, 57 1. 5 B. sket and M. Zupan, J. Chcni. Soc,.,Chcwi. Coniniirti., 1976, 1053. 6 B. Sket. N. ZupanEiE and M. Zupan, J. Chcni. So(...Pcrkiri Tiutis. 1. 1987,981. 7 I. Leban and L. Golie, unpublished results. 8 D. Bryce-Smith, A. Gilbert. B. H. Orger and P. J. Twitchett. J. C/7~1. Soc.. Pcrh-iii Tiutis. 1. 1978, 232. 9 E. M. Osselton, C. Erkclens. E. S. Krijnen. E. L. M. Lempers and J. Cornelisse. Mqy. RC.WII.Choii.. 1990, 28. 722. 10 D. Bryce-Smith, A. Gilbert, B. Orger and H. Tyrell, J. CIimi. So(... CllCtil.COllllllllll., 1974. 334. I 1 J. Mattay. T(~/ruhc~lr~)/i.1985. 41, 2405. Piipcr. 11'056857 Recvircd 5th Scptcv?iher.1991 Acc(jptc)t/ 1 1 tlt Nowmher 1991
机译:J. CHEM. soc. PERKIN 译.I 1992 萘环上的1,2-、1,3-和1,4-光环加成模式 NataSa ZupaneiC 和 Boris Sket 卢布尔雅那大学化学系,斯洛文尼亚,南斯拉夫 八氟萘和茚的光化学反应导致所有三种环加成模式,即 1,2-、1,3 和 1,4-环加成发生。苯的光化学涉及光重排环丁烷环和氟和光取代的统一取向,以及1,2-、1,3-和1,4-光环加成反应,已经进行了详细的研究和综述。萘的光化学行为与苯有很大不同。单纯萘不会光重排为杜瓦萘或萘。在萘和烯烃的光化学反应中,1,2-和I,4-光环加成反应是优选的反应模式,但在苯光化学中非常重要的烯烃的1J加成反应很少在萘中观察到.2 与八氟萘的光环加成反应有关的出版物很少出现,其中只有与共轭二烯的反应被~研究。 萘和一些乙炔衍生物的光环加成反应导致 1,2- 和 1,4-环加成模式,然后是二次重排或分子内环加成,导致最终产物^。^ 以前,我们发现茚和六氟苯的光加成导致顺式-顺式[2 + 21 cycl~adduct.~我们现在报道,在光化学条件下,八氟萘与茚反应形成相应的1,2-、1,3-和1,4-~ycloadducts。将茚和八氟萘的环己烷溶液在300nm处照射70小时。采用I9F NMR波谱分析粗反应混合物,确定初始萘的转化率为78“/,形成产物在3:4:5:6的相对比值为39:16:10:35(方案1)。用柱层析法(中性A120,,W 200)分离混合物,将粗分离产物从甲醇中结晶出来。产物的结构是根据其光谱数据确定的,对于化合物3,也通过X射线分析~是~~产物3的质谱图[mi.504(M'),388(M'-C,H,),272(M+-2×C,H,))和tn/z 116(C,H,)]处的基峰表明形成了茚和八氟萘的2:1加合物。加合物在1700-1 760 cm-'范围内没有红外吸收,这意味着不存在孤立的-CF=CF-基团,并且两个茚环通过[2 + 23环加成反应与八氟萘的同一环结合。加合物 3 的立体化学性质由 'H 和 '“F NMR 谱图测定,同时使用 COSY 和 HETCOR 实验的结果。19F NMR谱图显示,除了与芳香碳原子键合的氟原子对应的信号外,在6 -196.3和-177.6处也有信号,表明环丁烷环中氟原子和氢原子的mii分布,而6 -152.0和-150.0处的信号对应于第二个环丁烷环5中的syn取向氟原子和氢原子(表1)。化合物 3 在 6 4.0 和 4.2 处的 'H NMR 谱图中的信号,还包含耦合常数 J 16.5 和 22 Hz,对应于 .ynposition 中氟原子和氢原子的偶联,以及 0 3.0 和 3.9 处的信号,也包含一个小的耦合常数(小于 3 Hz), 对应于氟和氢原子在UNTI位置的偶联,也表示一个氢原子中的氟原子和氢原子在另一个氢原子中的.s.ivi取向。通过COSY和HETCOR实验以及X射线分析也证实了产物3的结构。产物4(方案1)在质谱图中显示出与产物3相同的分子峰和非常相似的碎裂。在其红外光谱中没有孤立的-CF=CF-基团的振动,表明产物4的结构必须与产物3密切相关。化合物 4 的 'H NMR 谱图在 6 4.0 和 4.3 处显示两个信号,与化合物 3 的 'H NMR 谱图中的信号几乎相同,即,对应于环丁烷环中氢原子的信号,这些氢原子与在同一环中键合的氟原子具有 sjw 取向5 与化合物 3 的 'H NMR 谱图中观察到的 6 3.6 和 3.9 处的信号不同,化合物 4 的 'H NMR 谱图中有两个信号,在 6 3.4 + aFwFF FF F 环己烷 1-300nrn 1 F F + 2 hv 茚 F 6 + 方案 I 180 表 1 处”八氟萘和茚的光产物的F NMR SPectroscoPy数据 化合物化学位移 (ppm)* ~~ ~ 3 -196.3 (m, I F, F-2), -177.6 (m, 1 F, F-I),-158.1 (m,1 F.芳香族 F), -150.7 (m, 1 F, 芳香族 F), -137.3 (m. 1 F, 芳香族 F), -136.2 (m, 1 F. 芳香族 F), -152.0 (tm, 1 F, F-3) 和 -150.0(m, 1 F,F-4) 4 -175.1(m,lF,F-3),-172.2(m,lF,F-2),-152.4(m,2F,芳香族Fs), -136.5(m,1 F,芳香族F), -131.5 (m,I F,芳香族F), -149.1 (m,I F,F-1) 和 -146.7 (m,1 F,F-4) 5 -196.5 (d, I F, F-I),-195.1 (dd, 1 F, F-4), -154.7 (m,2 I;,芳香族Fs), 154.7 (m, 2 F, 芳香族 Fs) 和 -148.4 (m, 2 F, F-2, F-3) 6 -222.4 (m, 1 F, 环丙基 F), -209.1 (m, 1 F, 环丙基 F), -190.3 (m, I F, 环丙基 F)。-159.9 (d, I F, F-I), -152,7(m,I F,芳香族F),-150.9(m, I F, 芳香族F), -144.9 (m, 1 F.芳香族F) 和 -141.4(m, I F, 芳香族F) * 溶剂, CDCl,;内部基准,CFCl,.和 4.5,还显示了耦合常数 16 Hz,这再次表明产物 4 的第二个环丁烷环中氢和氟原子的 sjn 取向。在化合物4的I9F NMR谱图中观察到的化学位移和耦合常数(表1)(未观察到氟原子与氢原子处于相反位置的信号)也证明了两个环丁烷环中的sjw取向。化合物5的结构也是根据其光谱数据确定的。在质谱图中,分子峰in/:388对应于八氟萘和茚的1:1加合物。红外吸收 (ltmax1755 cm-') 表明存在 -CF=CF- 双键,该双键与芳香族体系不处于共轭位置。6、4.3 和 3.5 处的信号显示耦合常数 (J 10 Hz),该常数表示它们彼此之间的顺式位置,以及通过与键合到双键的氟原子 (JFH10 Hz) 的空间耦合。这表明产物 5(方案 1)是一个 1,4-环加合物,其 encio 取向为 indan 环。1,4-加成模式也可以根据化合物5的I9F NMR谱图来确定,其中观察到,除了芳香族氟原子的信号外,还有S-196.5和-195.1处的两个信号对应于与饱和碳原子键合的氟原子,以及6 -148.4处双键处两个氟原子的信号(表1)。 COSY 和 HETCOR 测量也符合建议的结构。化合物 6 的分子峰为 rni:388(1:1 加合物),但碎片化与化合物 5 不同。在化合物6的红外光谱中没有孤立的-CF=CF-基团的振动,但在其I9F NMR光谱中,除了其他信号外,还有三个信号,分别在6 -222.4、-209.1和-190.3处对应于与环丙烷环的饱和碳原子键合的氟原子(表l)。 有人提出产物6是八氟萘和茚的1,3-加合物。为了确定1,3-加合物是作为初级光化学产物形成的,还是通过1,4-加合物的重排形成的,在与上述相同的反应条件下照射产物5的环己烷溶液。未观察到转化为 1,3-加合物。从结果可以看出,1,2-c~rztko-和1,4-~~1~t/o-加合物1.3-~~tk0-是主要形成的产物。cw/o 攻击可以通过反应物 x 系统的最大重叠来解释,并且通过产物 3 的 X 射线分析以及产物 5 的 H 和 F NMR 谱图确定。I 1992 主要通过 c~nckoor ('.YO 茚分子对该二氢萘衍生物中双键的攻击形成 [2 + 21 ewtko 加合物 2 (2, 方案 1)。据我们所知,这是在萘环和烯烃反应中观察到的第一个例子,其中发生1,2-、1,3-和1,4-环加成反应。还研究了八氟萘与其他一些环烯烃(如1,2-二氢萘、环戊烯和降冰片烯)和一些取代乙炔(如1-苯基丙-1-炔和乙炔二甲酸二甲酯)的光化学反应。确定在所有情况下,八氟萘的转化率都非常低(小于50,)),这使得不可能分离任何形成的产物。从得到的结果可以得出结论,Bryce-Smith t't a/.提出的基于芳烃和烯烃电离电位差异的AIP规则,以及选择性与电子转移自由焓之间的相关性(AG规则)l1不能用于预测八氟钠t卤烯的光化学反应模式。实验性将八氟萘(1 mmol)和茚(2 mmol)溶解在环己烷(16 cm 3)中。将溶液在室温下用300nm灯在Rayonet光化学室反应器中照射70小时。减压蒸发溶剂,将甲醇(2cm3)加入到粗反应液中。将析出的白色结晶化合物滤去,用甲醇重结晶,得到化合物3(熔点243-244'C)(发现:M+,504.1 10.C~BH~~F,:M,504.1124);111iz 504 (M', lo-2:,), 272 (31 x lo-'), 117(11), 116(100)和115(18).滤液中含有八氟萘和4,5和6号化合物,采用柱色谱法(Al,03 W 200,中性,流动相轻质石油)分离,粗品由甲醇结晶。化合物 4, m.p. 194-197 'c (发现: M+, 504.1 13.哎呀。对于C2,H16F8:M,504.1 124);nii:504(M+,0.6“1~),272(lo),1 17(1 1),1 16(100)和115(18)。化合物 5 m.p. 148-150 -C (实测值: M+, 388.050. C,,H,F,: M, 388.0498);无:388 (Mf、2 x 272 (9,117 (1 l)、116 (100) 和 115 (27)。化合物 6 m.p. 133- 135 C (发现值: M+, 388.050. 计算值 C,,H,F,: M, 388.0498);nz/: 389 (M' + 1,0.59;), 388 (M +,2), 272 (8), 148 (lo), 147 (86), 146 (14), 145 (23), 1 17 ( 1 1), 1 16 ( 100) 和 1 15 (27).参考文献 t D. Bryce-Smithand A. Gilbert.7i'ti.~ilic'r/r.oii, 1976,32, 1309;1977, 33, 1633.2 J. J. McCullough,Chcni.Rcr.,1987年。87. 8 1 1.3 J. Libman, J. Chm. Soc..克利米。1976年,第361页:J.Libman、Z.Ludmer、B.Lourie和V.Yakhot、J.Chcwi。Rc.v.(S),1978, 472: (M), 1978, 5557.4 E.格罗文斯坦。Jr.、TC Campbell 和 T. Shibata。J. Org. Clieni..1969.34,24 18: T. Teitei, D. Wells 和 W. H. F. Sasse, Ausi.J.Cheni., 1975, 28, 57 1.5 B. sket 和 M. Zupan, J. Chcni.Soc,.,Chcwi。Coniniirti., 1976, 1053.6 B.斯凯特。N. ZupanEiE 和 M. Zupan,J. Chcni。所以(...Pcrkiri Tiutis。1. 1987,981.7 I. Leban 和 L. Golie,未发表的结果。8 D.布莱斯-史密斯,A.吉尔伯特。BH Orger 和 PJ Twitchett。J. C/7~1号文件。Soc..Pcrh-iii Tiutis。1. 1978, 232.9 EM Osselton,C. Erkclens。E.S.克里宁。ELM Lempers 和 J. Cornelisse。Mqy的。钢筋混凝土。WII。崔..1990, 28.722. 10 D.布莱斯-史密斯、A.吉尔伯特、B.奥格和H.泰瑞尔、J.西米。所以(...CllCtil.COllllllllll.,1974年。334. 我 1 J. 马泰。T(~/ruhc~lr~)/i.1985年。41, 2405.皮普克。11'056857 Recvircd 5th Sc>ptcv?iher.1991 Acc(jptc)t/ 1 1 tlt Nowmher 1991

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号