首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Allosteric ligand binding to cofacial metalloporphyrin dimers: the mechanism of porphyrin disaggregation
【24h】

Allosteric ligand binding to cofacial metalloporphyrin dimers: the mechanism of porphyrin disaggregation

机译:变构配体与共面金属卟啉二聚体结合:卟啉分解的机制

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. I 1989 Allosteric Ligand Binding to Cofacial Metalloporphyrin Dimers: the Mechanism of Porphyrin Disaggregation Christopher A.Hunter, Philip Leighton, and Jeremy K. M.Sanders* University Chemical Laboratory, Lensfield Road, Cambridge CB2 I EW Intramolecular n-n interactions in two cofacial zinc porphyrin dimers have been probed as a model for porphyrin-porphyrin aggregation. Comparative studies of the binding of substituted pyridines using n.m.r., u.v./visible absorption and emission spectroscopy have allowed separation of the steric and electronic contributions to disaggregation and have shown that disruption of the x-x interaction in metalloporphyrins by ligands is mainly a steric effect. The electronic effect of ligand co-ordination is to moderate the interaction slightly by reducing the polarisation of the porphyrin by the metal.When ligand binding to a dimer causes disaggregation, the process of binding is allosteric, the second ligand binding being stronger than the first. The creation of fully synthetic enzymes based on porphyrins requires that we understand the steric and electronic factors controlling their conformations and In this paper we address the question of porphyrin-porphyrin n--7c inter-actions, which are a poorly understood aspect of this wider pr~blem.~In an effort to develop a model for n-stacking phenomena, we designed two porphyrin cofacial dimers, (1) and (2), with flexible bridging chains. The synthesis and properties of 0 i the free base and zinc derivatives were recently reported,3c and it will be necessary to reproduce some spectroscopic data from that report to develop our arguments coherently in his paper.We have used these dimers to investigate how metallation and co-ordination of the central metal ion affects porphyrin n-n interactions. We have used three techniques to monitor the porphyrin- porphyrin interaction in the dimers: u.v./visible absorption, emission and n.m.r. spectroscopy. The first two techniques used ca. M solutions, while the n.m.r. solutions were ca. M. These solutions are all sufficiently dilute that intermolecular interactions are negligible; any evidence found for porphyrin aggregation is due to intramolecular interactions. In addition, measurements were made relative to, or may be compared with the control, meso-11-porphyrin dimethyl ester denoted (3) or its zinc derivative denoted Zn(3)1, so that any effects observed are solely due to porphyrin-porphyrin interactions. It should be further noted that in the following discussion, unless otherwise indicated, addition of pyridine refers to the addition of a large excess of pyridine so that the porphyrins are fully bound.Absorption spectroscopy can be used to determine the relative orientation and proximity of the two porphyrin moieties by the presence or absence of exciton coupling, and the co-ordination state of the zinc in the metalloporphyrin. When the zinc becomes five-co-ordinate a characteristic blue shift in the wavelength of the Soret band occurs; the magnitude of the shift depends on the basicity of the ligand and whether oxygen or nitrogen binds to the metal.For example, pyridine binding 548 J. CHEM. SOC. PERKIN TRANS. I 1989 causes a blue shift of 10-1 1 nm. Thus it is possible to examine Thus a plot ofln{(A -A,)/(A, -A))us. ln(free ligand) should simultaneously ligand binding and disaggregation by following yield a straight line of slope, x, of 1 for independent, identical changes in the absorption spectrum during titration of the binding at the two sites; this is a Hill plot.5 Co-operative metallated dimers with various ligands. binding, where the second binding is aided by the first gives a In these titrations it is not possible to measure independently slope 1, while negative co-operativity gives a slope of 1.In the absorption of the mono-pyridine adducts. This can lead to cases where binding at the two sites is not identical and large errors in the interpretation of such data when dealing with independent, then equation (1) does not necessarily hold; the sequential binding at a single site.4 However, in this work we data were then analysed by a least-squares curve-fitting routine have two separate sites whose properties, before any ligand to ensure that accurate values for the binding constants were binds, are identical. Thus, as a starting point for analysis, we obtained. In simpler systems, these curve-fitting results merely assume that, to a good approximation, the extinction co-confirmed those obtained by the above analysis.efficients of the mono-pyridine adducts at any wavelength are We used two additional spectroscopic techniques to investi- given by equation (1). The absorption of the dimer is, in effect, gate ligand binding by these porphyrin dimers. Their emission (fluorescence) spectra were used to determine whether or not the -1 amp;monopyridine adduct -2(amp;free dimer) + amp;bispyridine adduct) ( 1, porphyrin moieties are close in space, since proximity of the two porphyrins leads to fluorescence q~enching.~" Finally, H and the sum of the absorptions of the two individual porphyrin units 13C n.m.r. studies of these systems provided independent within the dimer. We show below that further justification for information about the geometries of the porphyrin-porphyrin this assumption comes from curve-fitting routines: using the interactions.The use of n.m.r. in this way has been described in above values for the mono-pyridine adduct extinction coeffi- detail el~ewhere.~",~ cients generally yields a considerably better fit to the data than any other values. The binding data can be used to determine whether or not Results there is any co-operativity in the binding of the ligands. If there U.v.1Visible Absorption Spectra-Absorption spectra of co-is no co-operativity, then we can treat the problem as a simple facial porphyrin dimers show clear signs of exciton coupling of (1) and (2), and their zinc derivatives single-site binding problem because the two binding sites the two chrornoph~res.~~*~ behave independentIy and identically.Equation (2) then holds are no exceptions, and their Soret bands are broadened, hypochromic, and hypsochromically shifted relative to (3) and ln{(A -A,)/(A, -A)) = xln(freeligand) + In(K) (2) Zn(3) (Table 1). This indicates that the two porphyrin planes are parallel and in close proximity, presumably as a result of strong where A is the absorption at a particular wavelength (A), A, is n--n: interaction between them. the initial absorption at A, A, is the final absorption at A,K is These interactions can be abolished by the addition of the binding constant, and xis a constant defining the number of trifluoroacetic acid to the free base dimers. The protonated ligands bound per site.porphyrin rings repel each other and move to their maximum Table 1. Electronic absorption and emission properties of porphyrins U.v./visible absorption spectra a Soret band AI bsol; Emission spectra ~nl,x.lnm FWHM' f A Compound (amp; 10-3) (nm) Lrn(nm) Qf(rel)* 387 (182) 57 626 0.47 385 (192) 58 624 0.54 397 (164) 39 62I 1.0 401 (601) 14 598 0.79 397 (610) 19 596 0.71 401 (406) 12 596 1.o Zinc derivatives Zn,(l) 388 (272) 28 586 0.15 Zn,(2) 388 (166) 31 581 0.20 Zn(3) 402 (314) 13 572 1.o Zinc derivatives + pyridines Zn,(l) + PY 409 (461) 15 583 0.96 Zn,(2) + PY 408 (200) 28 585 0.37 Zn(3) + Py 413 (318) 12 582 1.o Zn,(l) + 4-EtPy 411 (385) 19 580 0.56 Zn,(l) + 4-Bu'Py 411 (326) 21 580 0.68 a In dichloromethane solution.Recorded in dichloromethane solution at concentrations of ca. M with irradiation at the Soret maximum. Full width at half height of the maximum absorption of the Soret band. Fluorescence emission per porphyrin moiety, relative to (3) or the corresponding derivative as appropriate. J. CHEM. SOC. PERKIN TRANS. I 1989 b 61 / -6 -5 -4 -3 -2 -1 0 Ln ILI Figure 1.Hill plots for the binding of pyridines to Zn,(l) and Znz(2): (a) Zn,(2) + pyridine, (b) Zn,(l) + pyridine, (c) Zn,(l) + 4-t-butylpy-ridine. Data are taken from the Soret absorption of the porphyrin, whereR = (A-A,)/(amp;-A)and Llistheconcentrationofaddedligand possible separation, so the exciton coupling should be reduced to the minimum allowed by the length of the connecting chain.Indeed exciton coupling is effectively abolished for (l), but the short bridging chains of (2) hold the porphyrins closer together so that weak exciton coupling is observed. Addition of pyridine to Zn,(l) abolishes much of the exciton coupling and produces an absorption spectrum that is virtually normal, showing that we have successfully disaggregated the porphyrins. However, addition of pyridine to Zn,(2) reduces the exciton coupling seen in the Soret band much less dramatically; we have not disaggregated the two porphyrins. There is essentially no structural difference between the two dimers apart from the length of the bridging chains and the size of the potential cavity between the two porphyrin faces.We reasoned that the difference in behaviour of the two systems must be due to the ability of the ligand to enter the cavity between the two porphyrins and disrupt the n-n stacking. CPK models suggested that pyridine was indeed too big to fit inside Zn,(2) but should fit inside Zn,(l). We decided, therefore, to investigate the effects of binding more bulky pyridines. Models indicated that 4-substituted pyridines would not fit inside Zn,( 1). The results for binding 4-t-butyl- and 4-ethyl- pyridine to Zn(1) show that these ligands are indeed less effective in disrupting the porphyrin aggregation: the Soret bands still show considerable exciton coupling (Table 1).There is little electronic effect involved in using this range of pyridines pKb(Py) = 8.64 and pKb(6EtPy) = pKb(4-Bu'Py) = 8.001; indeed the substituted pyridines should bind more strongly to the zinc, so that the observed effects must be purely steric.* Plots of the titrations of Zn,(2) and Zn,(l) with pyridine, and of Zn,(l) with 4-t-butylpyridine are shown in Figure 1, and the * Water is present in most samples, but has a low affinity for zinc and it should not compete significantly with pyridine.Titrations were repeated three times with variable amounts of water but the results were identical. Table 2' Binding properties of porphyrins KIb K2' Hill Compound Ligand (w') (M-') coefficient Zn2(1 Zn,(l) ZnZ(2) Pyridine 4-t-Butylpyridine Pyridine 105 426 105 202 115 23 1.39 1.01 0.99 'The errors are ca.5. K, = mono-Py adduct/(Pyfree dimer). Kz = bis-Py adduct/(Pymono-py adduct). results are summarised in Table 2. For the Zn2(2)-pyridine and Zn,(l)*hindered-pyridine systems there is a simple binding process at each site, the slope being one. Curve-fitting analysis reveals that, as expected for simple two-site systems with non co-operative binding, K, = 4K,. However, the Zn,( 1)spyridine system behaves very differently. The slope of the Hill plot is 1.39 because there is co-operativity in the binding process: the fact that the first site is co-ordinated to pyridine increases binding to the second site by a factor of ca. 7. This is, in fact, an artificial allosteric system with a surprisingly large Hill coefficient. The very large change in the absorption spectrum of Zn,(l) resulting from disaggregation on pyridine-binding raises the question of whether the change results from binding the first or the second ligand molecule.We can estimate the effect of binding without disaggregation by comparison with the other compounds in this study, and then attempt curve-fitting with the disaggregation effects added either at the first or second binding stage. The best fit is obtained if the absorption properties of the mono-pyridine adduct are midway between those of the pyridine-free dimer and bis-adduct i.e. equation (1) is, coincidentally, applicable for this molecule. It seems, then, that both steps in pyridine binding contribute to the intramolecular disaggregation of Zn,(l).However, this result cannot tell us exactly how much the two porphyrin moieties are separated in the mono-adduct, or what proportion of the molecules are separated rather than aggregated. Emission Spectra.-A characteristic feature of the emission spectra of porphyrin dimers is that the fluorescence is strongly shifted and significantly quenched by the chromophore-chromo- phore interactions. These interactions are disrupted in the free base compounds (1) and (2) by addition of trifluoroacetic acid (Table 1), which forces the two porphyrin entities to their maximum ~eparation.~' The substantial increase in fluorescence in both dimers on protonation again shows that we have largely effected disaggregation.The zinc dimers also show fluorescence quenching; in fact they show a substantial increase in quenching compared with the free base compounds, indicating that, as expected, the n-n: interaction has been enhanced by metallati~n.'.~ However, a remarkable difference in behaviour between Zn,(l) and Zn,(2) is seen in their emission properties on addition of pyridine. Addition of pyridine to Zn(3) causes a 50 decrease in the intensity of fluorescence; this is a standard feature of metalloporphyrin fluorescence, and is in marked contrast to the behaviour of Zn,(l) (Table 1 and Figure 2). Fluorescence quenching is completely abolished on co-ordination of Zn,(l), again indicating that complete disaggregation has been achieved. As expected from the absorption results above, Zn,(2) shows a small reduction in the degree of fluorescence quenching; despite co-ordination by pyridine, the chromophores show only a slight weakening in their interaction.Similarly the addition of 4-t-butyl- or 4-ethyl-pyridine to Zn,(l) does not completely abolish the fluorescence quenching. 550 J. CHEM. SOC. PERKIN TRANS. I 1989 Table 3. 'H N.m.r. chemical shifts for Zn,(l) + various pyridines Proton Zn(3) + Pyridine Zn,(l) +PY +4-Bu'Py +4-EtPy 10.11 9.18 9.57 9.50 9.48 10.09 8.35 9.30 8.93 8.92 - 4.5 1 3.84 3.93 3.92 4.10 4.03 3.90 4.04 4.04 4.37 2.84 3.55 2.63 2.68 3.62 3.14 3.35 3.40 3.40 3.57 2.77 3.02 2.49 2.53 3.28 2.74 2.69 2.27 2.3 1 1.87 1.78 1.72 1.90 1.89 583 Table 4.Observed and Zn,(l)-pyridine adduct" Proton 5-H 20-H Hb Hd Ha Hc Hdp Hb' calculated best-fit chemical shifts for Observed Calculated 0.40 0.49 0.70 0.77 0.20 0.13 0.82 0.85 0.27 0.30 0.55 0.56 0.59 0.47 0.15 0.18 " P.p.m. upfield shift relative to Zn(3)opyridine adduct. z = 6 A, a family of conformations with 4 z- 8 A, or an equilibrium between two well defined geometries with z = 4 A and z = 8 A. A similar calculation for Zn2(l) in the absence of ligand gives a displacement of x = 3.0 A, y = 2.0 A, z = 4.0 A.3cHence from these calculations we can conclude that the effect of binding pyridine is to increase the vertical separation of the rings while maintaining a similar displacement in the xy plane.Such a detailed study of pyridine binding to Zn,(2) was not possible since this compound has lower symmetry and so the spectrum is more complicated. Nevertheless, the addition of pyridine to Zn2(2) changes the spectrum only slightly, indica-, ting only minor changes in the average geometry. The titrations of Zn,(l) with pyridine, 4-ethyl-and 4-t-butyl-II .-----633 y4-._____.' __--.-660 550 h/nm Figure 2. Fluorescence emission spectra: (a) ----Zn,(l) and ~ Zn,( 1) + pyridine; (b) -----Zn(3) and Zn(3) + pyridine~ N.rn.r. Spectra-In the n.m.r. spectra of Zn,(l) and Zn2(2) we observe large ring current-induced shifts in the dimer signals indicating close, cofacial proximity (Table 3).Addition of pyridine to Zn,(l) dramatically reduces these upfield shifts. The ring-current shifts for the Zn,(l) pyridine complex were fitted to a best geometry using a porphyrin ring-current m~del.~~,~The parameterisation of the model and the limitations of the approach have been described in detail previously.6 The calcul-ations gives a good fit (Table 4) to the geometry described by a displacement x =3.5 A, y = 2.0 A, z = 6.0 8, of the centre of one porphyrin relative to the centre of the other. The r.m.s. error is 0.06 p.p.m. and the agreement factor, AF, is 0.12. However, in the calculation we cannot distinguish a single geometry with pyridine were followed by 'H n.m.r. spectrometry (Table 3).We do not see large upfield shifts of the pyridine signals in the 'H n.m.r. spectrum, even when it is binding inside the cavity, because the pyridine signals are in fast exchange, the binding constant is small, and the solutions used were ca. 10-3~.There is always a vast excess of free compared with bound pyridine, so the resultant upfield shifts are too small to be be of any diagnostic value. The final porphyrin chemical shifts of the fully bound species in the n.m.r. titration (Table 3) clearly indicate that the hindered pyridine adducts have a radically different geometry from the pyridine adduct and that the two porphyrins are still in close proximity. This is because the substituted pyridines are too large to fit into the cavity and so cannot disrupt the porphyrin-porphyrin interaction. The geometry of the interaction is, however, altered when a hindered pyridine is bound.From the chemical shifts in Table 3 it is possible to describe this new geometry fairly clearly. Relative to Zn,(l), in the hindered pyridine adducts H,, Hdt,H,, and He are shifted upfield (i.e.this part of one porphyrin moves over the face of the other porphyrin and experiences a greater ring current), while the other protons are shifted downfield. Most noticeably, H,. in these adducts experiences a small downfield shift. The por-phyrins must thus be further offset approximately along the direction of the bridging chains. Addition of an excess of J. CHEM. SOC. PERKIN TRANS. I 1989 pyridine to the 4-t-butylpyridine adduct again changes the conformation and yields the fully disaggregated dimer as expected.Discussion These results all indicate that the binding of pyridine to Zn,(2) slightly reduces the n:-n: interaction between the two porphyrin entities. Similarly, binding of 4-alkylpyridines to Zn,(l) disrupts the n-n: interaction to a small extent. In contrast, binding pyridine to Zn,(l) effects complete disaggregation. The con- clusion we draw from this is that disaggregation of metallo-porphyrins by ligand co-ordination is mainly a steric effect. The rate of ligand exchange is so fast that, despite zinc being exclusively 5-co-ordinate in porphyrins, there are effectively pyridine ligands on both porphyrin faces. Thus pyridine co- ordination blocks both porphyrin faces and prevents any n-n: interaction.The n.m.r. data on the Zn,(l)*pyridine complex suggest a range of geometries, either due to rotation of one porphyrin relative to the other or to simple opening and closing of the cavity, both of which would facilitate binding of the ligand in the cavity. The allosteric behaviour of the system can be explained on this model. When the first pyridine molecule binds, the n:-n interaction is reduced slightly as in the case of Zn2(2)-pyridine complex and this permits penetration of pyridine into the cavity, resulting in an equilibrium between pyridine bound on the inside and on the outside of the dimer. Penetration of pyridine into the cavity forces the porphyrins apart and significantly disrupts the n:-n: interaction.In this open form the second zinc site is exposed and so binds pyridine more strongly. The binding constants between pyridine and these dimers are significantly smaller than the value of 2 890 M-' for pyridine binding to the simple monomer, Zn (3).This effect is the result of competition either with an internal ligand 6,8or with some other factor that reduces the Lewis acidity of the metal ion. In the case of these dimers, the n-n: interaction itself appears to be dramatically reducing the affinity of the zinc for external ligands. The higher affinity of Zn,(l) for the first molecule of 4-t- butylpyridine than for pyridine itself presumably reflects the greater basicity of the substituted ligand; the ratio of the two K, values is precisely that expected for a pK, difference of 0.6 units.Our evidence demonstrates that metallation enhances the porphyrin-porphyrin interaction and the consequential aggre- gation. This enhancement has been explained in terms of polarisation of the porphyrin n:-system by the metal ion.36 It seems that the greater the metal-porphyrin interaction, the greater the n-n: stacking forces. The electronic effect of co- ordination of the metal ion is to reduce the metal-porphyrin interaction. The polarisation of the porphyrin by the metal is, therefore, reduced and so, in cases such as the Zn2(2).pyridine complex, the n:-n: interaction with the other face is weakened slightly.In support of this, the fluorescence results suggest that binding of a more basic ligand, a 4-alkylpyridine, reduces the n:-n: interaction in Zn,(l) to a larger extent than pyridine binding to Zn,(2). Clearly, however, co-ordinative saturation of the metal is not by itself capable of preventing aggregation. We recently reported the syntheses of some new macrocyclic porphyrin dimers which provide additional evidence in support of these ideas. ' The bridging groups were long enough to cap the porphyrin and produce a monomeric species. In the course of the dimer syntheses the corresponding capped species were * These capping groups are small enough that they will even .rc-stack with a magnesium porphyrin which is co-ordinated to two axial ligands, (C.A. H. and J. K. M. S.; unpublished results). 55 1 indeed produced and the yield of the capped compound was found to be strongly dependent on the strength of the n:-n interaction between the cap and the porphyrin: use of the zinc porphyrin considerably increased the yield of the capped compound even in the presence of a large excess of N,N-dimethyl-4-aminopyridine.* In other words, despite the co-ordination of the zinc by the pyridine derivative, the n-stacking was enhanced relative to the metal-free system. Further corroboratory evidence is provided by the co-ordination chemistry of Zn,(l) and Zn,(2) with bifunctional ligands: a single molecule of an appropriate size will bind in the cavity between the two porphyrins in each of these dimers, inducing all the disaggregation phenomena exhibited by the Zn,(l)-pyridine system.These results will be discussed in a future report. Conclusions We have shown that disaggregation of metalloporphyrins by basic ligands has a small electronic component, but that it is dominated by steric factors. It seems, therefore, that it will not be possible to exert subtle control on porphyrin-porphyrin interactions and conformation through the electronic effects of ligand co-ordination. Rather, this control will have to be built into the covalent structure of the macrocycle. Experimental The porphyrins were synthesized as described previo~sly.~' U.v./visible electronic absorption spectra were recorded on a Pye-Unicam PU 8800 spectrometer in 1cm x 1cm cuvettes.All measurements were made on dichloromethane solutions, ca. lo-' M in porphyrin. Emission spectra were recorded on dichloromethane solutions in 1 cm x 1 cm cuvettes with a Perkin-Elmer 3000 spectrometer. The apparatus was initially rigorously cleaned and dried and the dichloromethane was distilled from calcium hydride. Accurately determined pyridine solutions of ca. 0.5 M were made up in 1 ml volumetric flasks and added to the porphyrin sample in 5 pl aliquots uia a 10 pl Hamilton 800 Series syringe. Towards the end of the titrations, the neat pyridines were added in 1 pl aliquots. The analysis of the results allowed for the changes in volume which occurred during the titration. Titration data were analysed by graphical and curve-fitting programs on a Macintosh SE microcomputer.The curve-fitting programs are based on Simplex routines written by Dr. A. Crawford. 'H N.m.r. spectra were recorded on Bruker AM-400 and WM-250 spectrometers. Data were accumulated over 16K data points with a spectral width of 12 p.p.m. Spectra were obtained in deuteriochloroform or deuteriodichloromethane solutions. Acknowledgements We thank the D.E.N.I. (C. A. H.) and the S.E.R.C. (P. L.) for financial support, Dr. A. Crawford for help with the curve- fitting program, and Prof. R. J. Abraham for the ring current calculations. References 1 C. A. Hunter, M. N. Meah, and J. K. M. Sanders, J. Chem. Soc., Chem. Commun., 1988, 692 and 694. 2 (a)J. P. Collman, A.0.Chong, G. B. Jameson, R. T. Oakley, E. Rose, E. R. Schmittou and J. A. Ibers, J. Am. Chem. Soc., 1981,103,516;(b) A. D. Hamilton, J.-M. Lehn and J. L. Sessler, J. Chem. Soc., Chem. Commun., 1984, 311; (c) A. D. Hamilton, J.-M. Lehn and J. L. Sessler, J. Am. Chem. SOC.,1986, 108, 5158; (d)B. B. Wayland, S. L. Van Voorhees, and K. J. Del Rossi, ibid., 1987, 109, 6513; (e)J. P. Collman, J. I. Brauman, J. P. Fitzgerald, P. D. Hampton, Y.Naruta, J. W. Sparapany, and J. A. Ibers, ibid., 1988, 110, 3477; (f)J. P. Collman, J. I. Brauman, J. P. Fitzgerald, P. D. Hampton, Y. Naruta, and T. Michida, Bull. Chem. SOC.Jpn., 1988, 61, 47. 3 (a)R. J. Abraham, F. Eivasi, H. Pearson, and K. M. Smith, J. Chem. Soc., Chem. Commun., 1976,698 and 699; (b)R. J. Abraham, S. C. M. Fell, H. Pearson, and K. M. Smith, Tetrahedron, 1979,35, 1759; (c)P. Leighton, J. A. Cowan, R. J. Abraham, and J. K. M. Sanders, J. Org. Chem., 1988, 53, 733, 4 (a) W. B. Person, J. Am. Chem. Soc., 1965, 87, 167; (b) D. A. Deranleau, ibid., 1969, 91, 4050. J. CHEM. SOC. PERKIN TRANS. I 1989 5 A. V. Hill, J. Physiol. London, 1910, 40, IV-VII. 6 R. J. Abraham, P. Leighton, and J. K. M. Sanders, J. Am. Chem. SOC.,1985, 107, 3472. 7 M. Kasha, H. R. Rawls, and M. A. El-Bayoumi, Pure Appl. Chem., 1965, 11, 371. 8 R. J. Harrison, B. Pearce, G.S. Beddard, J. A. Cowan, and J. K. M. Sanders, Chem. Phys., 1987, 116,429. Received 8th July 1988; Paper 8/02746C
机译:J. CHEM. SOC. PERKIN 译.I 1989 变构配体与共面金属卟啉二聚体的结合:卟啉分解的机制 Christopher A.Hunter、Philip Leighton 和 Jeremy K. M.Sanders* 大学化学实验室,Lensfield Road,Cambridge CB2 I EW 两个共面锌卟啉二聚体中的分子内 n-n 相互作用已被探索为卟啉-卟啉聚集的模型。使用N.M.R.、U.V./可见光吸收和发射光谱对取代吡啶结合的比较研究允许分离空间和电子对分解的贡献,并表明配体对金属卟啉中x-x相互作用的破坏主要是空间效应。配体配位的电子效应是通过减少金属对卟啉的极化来稍微缓和相互作用。当配体与二聚体结合导致分解时,结合过程是变构的,第二个配体结合比第一个更强。基于卟啉的全合成酶的产生需要我们了解控制其构象的空间和电子因素,并在本文中,我们解决了卟啉-卟啉n--7c相互作用的问题,这是这个更广泛的pr~blem的一个知之甚少的方面.~为了开发n-堆叠现象的模型,我们设计了两个卟啉共面二聚体, (1)和(2),具有柔性桥接链。最近报道了0 i游离碱和锌衍生物的合成和性质,3c有必要从该报告中复制一些光谱数据,以在他的论文中连贯地发展我们的论点。我们使用这些二聚体来研究中心金属离子的金属化和配位如何影响卟啉 n-n 相互作用。我们使用了三种技术来监测二聚体中的卟啉-卟啉相互作用:紫外线/可见光吸收、发射和核磁阻波谱。前两种技术使用ca.M溶液,而n.m.r.溶液是ca.M.。这些溶液都足够稀释,分子间相互作用可以忽略不计;发现的任何卟啉聚集的证据都是由于分子内相互作用。此外,对内消旋-11-卟啉二甲酯[记为(3)]或其锌衍生物[记为Zn(3)1]进行测量,或可以与对照进行比较,因此观察到的任何影响完全是由于卟啉-卟啉相互作用。应进一步说明,在下文的讨论中,除非另有说明,吡啶的加入是指加入大量过量的吡啶,使卟啉完全结合。吸收光谱可用于通过激子偶联的存在与否以及金属卟啉中锌的配位状态来确定两个卟啉部分的相对取向和接近度。当锌变为五坐标时,Soret 波段的波长会出现特征性蓝移;这种变化的大小取决于配体的碱度以及氧或氮是否与金属结合。例如,吡啶结合 548 J. CHEM. SOC. PERKIN TRANS.I 1989 导致 10-1 1 nm 的蓝移。因此,可以检查 因此 plotofln{(A -A,)/(A, -A))us。ln([游离配体])应同时进行配体结合和解聚,在两个位点的结合滴定过程中,对于吸收光谱的独立、相同的变化,产生斜率 x 为 1 的直线;这是希尔图.5 具有各种配体的合作金属化二聚体。结合,其中第二个结合由第一个结合辅助,给出一个 在这些滴定中,不可能独立测量斜率> 1,而负协同作用给出 化合物 (& 10-3) (nm) Lrn(nm) Qf(rel)* 387 (182) 57 626 0.47 385 (192) 58 624 0.54 397 (164) 39 62I 1.0 401 (601) 14 598 0.79 397 (610) 19 596 0.71 401 (406) 12 596 1.o 锌衍生物 Zn,(l) 388 (272) 28 586 0.15 Zn,(2) 388 (166) 31 581 0.20 锌(3) 402 (314) 13 572 1.o 锌衍生物 + 吡啶 Zn,(l) + PY 409 (461) 15 583 0.96 Zn,(2) + PY 408 (200) 28 585 0.37 Zn(3) + Py 413 (318) 12 582 1.o Zn,(l) + 4-EtPy 411 (385) 19 580 0.56 Zn,(l) + 4-Bu'Py 411 (326) 21 580 0.68 a 在二氯甲烷溶液中。记录在浓度约为 M 的二氯甲烷溶液中,并以 Soret 最大值照射。Soret带最大吸收的一半高度的全宽。每卟啉部分的荧光发射量,相对于(3)或相应的衍生物视情况而定。J. CHEM. SOC. PERKIN 译.I 1989 b 61 / -6 -5 -4 -3 -2 -1 0 Ln ILI 图 1.吡啶与Zn,(l)和Znz(2)结合的希尔图:(a)Zn,(2)+吡啶,(b)Zn,(l)+吡啶,(c)Zn,(l)+4-叔丁基吡啶。数据取自卟啉的Soret吸收,其中R=(A-A,)/(&-A)和[Llistheconcentrationofadded配体可能分离,因此激子偶联应减少到连接链长度允许的最小值。事实上,(l)的激子偶联被有效地消除了,但(2)的短桥接链使卟啉更紧密地结合在一起,因此观察到弱激子偶联。在Zn中加入吡啶(l)消除了大部分激子偶联,并产生了几乎正常的吸收光谱,表明我们已经成功地分解了卟啉。然而,在Zn中加入吡啶(2)可减少Soret带中可见的激子偶联,其显著性要小得多;我们还没有对这两种卟啉进行分类。除了桥接链的长度和两个卟啉面之间的电位腔的大小外,两个二聚体之间基本上没有结构差异。我们推断,两个系统行为的差异一定是由于配体进入两个卟啉之间的空腔并破坏n-n堆积的能力。CPK模型表明,吡啶确实太大而无法放入Zn,(2)但应该适合Zn,(l)。因此,我们决定研究结合更多笨重吡啶的影响。模型表明,4-取代的吡啶不适合Zn,(1)。将 4-叔丁基和 4-乙基吡啶与 Zn(1) 结合的结果表明,这些配体在破坏卟啉聚集方面确实不太有效:Soret 带仍然显示出相当大的激子偶联(表 1)。使用这个范围的吡啶[pKb(Py) = 8.64和pKb(6EtPy) = pKb(4-Bu'Py) = 8.001;事实上,取代的吡啶应该与锌结合得更强,因此观察到的效应必须是纯空间的。* Zn,(2) 和 Zn,(l) 与吡啶的滴定图,以及 Zn,(l) 与 4-叔丁基吡啶的滴定图如图 1 所示,* 大多数样品中都存在水,但对锌的亲和力较低,不应与吡啶显着竞争。用不同量的水重复滴定三次,但结果是相同的。表2' 卟啉KIb K2' Hill化合物配体的结合性质 (w') (M-') 系数 Zn2(1> Zn,(l) ZnZ(2) 吡啶 4-叔丁基吡啶 吡啶 105 426 105 202 115 23 1.39 1.01 0.99 '误差约为 5%。K, = [mono-Py adduct]/([Py][游离二聚体])。Kz = [双-Py加合物]/([Py][单-Py加合物])。结果总结在表2中。对于Zn2(2)-吡啶和Zn,(l)*受阻吡啶体系,每个位点都有一个简单的结合过程,斜率为一个。曲线拟合分析表明,正如具有非合作结合的简单双位点系统所预期的那样,K, = 4K,。然而,Zn,(1)吡啶系统的行为非常不同。Hill 图的斜率为 1.39,因为结合过程中存在协同作用:第一个位点与吡啶配位的事实使与第二个位点的结合增加了约 7 倍。事实上,这是一个人工变构系统,具有惊人的大希尔系数。吡啶结合解聚导致的Zn(l)吸收光谱的非常大的变化提出了一个问题,即这种变化是由于结合第一配体分子还是第二配体分子引起的。我们可以通过与本研究中的其他化合物进行比较来估计无分解结合的效果,然后尝试使用在第一个或第二个结合阶段添加的分解效果进行曲线拟合。如果单吡啶加合物的吸收特性介于不含吡啶的二聚体和双加合物之间,则获得最佳拟合[即等式(1)恰好适用于该分子]。因此,吡啶结合的两个步骤似乎都有助于Zn,(l)的分子内分解。然而,这个结果并不能确切地告诉我们两个卟啉部分在单加合物中分离了多少,或者分子的比例是多少被分离而不是聚集。发射光谱-卟啉二聚体发射光谱的一个特征是荧光被发色团-发色团相互作用强烈移位并显着猝灭。这些相互作用在游离碱化合物(1)和(2)中被添加三氟乙酸(表1)破坏,这迫使两个卟啉实体达到最大~分离.~'质子化时两个二聚体的荧光显着增加再次表明我们已经在很大程度上影响了分解。锌二聚体也表现出荧光猝灭;事实上,与游离碱化合物相比,它们的猝灭性显著增加,表明,正如预期的那样,金属化~n.'.~ 然而,Zn,(l) 和 Zn,(2) 在添加吡啶时的发射性能上存在显着差异。在 Zn(3) 中加入吡啶会导致荧光强度降低 50%;这是金属卟啉荧光的标准特征,与Zn,(l)的行为形成鲜明对比(表1和图2)。荧光猝灭在Zn,(l)配位时完全消除,再次表明已经实现了完全解聚。从上述吸收结果可以看出,Zn,(2)的荧光猝灭程度略有降低;尽管吡啶具有配位作用,但发色团的相互作用仅略有减弱。类似地,在Zn中加入4-叔丁基-或4-乙基吡啶,(l)并不能完全消除荧光猝灭。550 J. CHEM. SOC. PERKIN TRANS.I 1989 表 3.'H N.m.r. Zn,(l) + 各种吡啶的化学位移 质子 Zn(3) + 吡啶 Zn, (l) +PY +4-蒲式耳 +4-EtPy 10.11 9.18 9.57 9.50 9.48 10.09 8.35 9.30 8.93 8.92 - 4.5 1 3.84 3.93 3.92 4.10 4.03 3.90 4.04 4.04 4.37 2.84 3.55 2.63 2.68 3.62 3.14 3.35 3.40 3.40 3.57 2.77 3.02 2.49 2.53 3.28 2.74 2.69 2.27 2.3 1 1.87 1.78 1.72 1.90 1.89 583 表 4.观察到的和 Zn,(l)-吡啶加合物“ 质子 5-H 20-H Hb Hd Ha Hc Hdp Hb' 计算的最佳拟合化学位移 观察计算 0.40 0.49 0.70 0.77 0.20 0.13 0.82 0.85 0.27 0.30 0.55 0.56 0.59 0.47 0.15 0.18 ” P.p.m. 相对于 Zn(3)opyridine 加合物的上场位移。z = 6 A,具有 4 < z-< 8 A 的构象族,或具有 z = 4 A 和 z = 8 A 的两个明确定义的几何形状之间的平衡。在没有配体的情况下,对 Zn2(l) 的类似计算给出了 x = 3.0 A、y = 2.0 A、z = 4.0 A.3c因此,从这些计算中我们可以得出结论,结合吡啶的作用是增加环的垂直分离,同时在 xy 平面上保持相似的位移。对吡啶与Zn(2)的结合进行如此详细的研究是不可能的,因为这种化合物具有较低的对称性,因此光谱更复杂。然而,在Zn2(2)中加入吡啶仅略微改变了光谱,而平均几何形状仅发生了微小的变化。Zn,(l) 与吡啶、4-乙基和 4-叔丁基 II 的滴定法 .-----633 y4-._____.' __--.-660 550 h/nm 图 2.荧光发射光谱:(a)----Zn,(l)和~Zn,(1)+吡啶;(b) -----Zn(3) 和 Zn(3) + 吡啶~ N.rn.r. 光谱-在 Zn、(l) 和 Zn2(2) 的 n.m.r. 光谱中,我们观察到二聚体信号中环电流引起的大位移,表明近的共面接近(表 3)。在Zn中加入吡啶(l)可显著减少这些前场位移。使用卟啉环电流m~del.~~,~模型的参数化和方法的局限性已在前面详细描述过Zn,(l)吡啶配合物的环流位移到最佳几何形状上。 y = 2.0 A,z = 6.0 8,一个卟啉的中心相对于另一个卟啉的中心。均方根误差为 0.06 p.p.m.,一致性因子 AF 为 0.12。然而,在计算中,我们无法用吡啶区分单个几何形状,然后是'H n.m.r.光谱法(表3)。在'H n.m.r.光谱中,我们没有看到吡啶信号的上场位移很大,即使它在腔内结合,因为吡啶信号交换速度快,结合常数小,使用的溶液约为10-3~。与结合吡啶相比,游离的量总是很大,因此由此产生的前场偏移太小,没有任何诊断价值。在n.m.r.滴定法中,完全结合物质的最终卟啉化学位移(表3)清楚地表明,受阻的吡啶加合物与吡啶加合物的几何形状完全不同,并且两种卟啉仍然非常接近。这是因为取代的吡啶太大而无法放入空腔中,因此不能破坏卟啉-卟啉的相互作用。然而,当受阻吡啶结合时,相互作用的几何形状会改变。从表3中的化学位移可以相当清楚地描述这种新的几何形状。相对于Zn,(l),在受阻的吡啶中,加合物H,,Hdt,H和He向上移动(即,一个卟啉的这一部分在另一个卟啉的表面上移动并经历更大的环电流),而其他质子则向下移动。最明显的是,H,。在这些加合物中,会经历一个小的下场转移。因此,卟啉必须沿桥接链的方向进一步偏移。添加过量的 J. CHEM. SOC. PERKIN TRANS.I 1989 吡啶与 4-叔丁基吡啶加合物再次改变构象并产生完全分解的二聚体,如预期的那样。讨论 这些结果都表明,吡啶与Zn的结合,(2)略微降低了两种卟啉实体之间的n:-n:相互作用。同样,4-烷基吡啶与Zn,(l)的结合在一定程度上破坏了n-n:相互作用。相反,将吡啶与Zn结合(l)可完全分解。我们由此得出的结论是,通过配体配位分解金属卟啉主要是一种空间效应。配体交换的速率如此之快,以至于尽管锌在卟啉中仅是 5 配位,但在卟啉的两个面上都存在有效的吡啶配体。因此,吡啶配位阻断了卟啉的两个面,并阻止了任何n-n:相互作用。Zn,(l)*吡啶配合物的n.m.r.数据表明了一系列几何形状,要么是由于一个卟啉相对于另一个卟啉的旋转,要么是由于腔的简单打开和关闭,这两者都有助于配体在腔中的结合。该系统的变构行为可以用这个模型来解释。当第一个吡啶分子结合时,n:-n 相互作用略微减少 [如 Zn2(2)-吡啶络合物],这允许吡啶渗透到空腔中,导致二聚体内部和外部结合的吡啶之间的平衡。吡啶渗透到空腔中迫使卟啉分离并显着破坏 n:-n: 相互作用。在这种开放形式中,第二个锌位点暴露在外,因此更牢固地结合吡啶。吡啶与这些二聚体之间的结合常数明显小于吡啶与简单单体 Zn 结合的 2 890 M-' 值 (3)。这种效应是与内部配体 6,8 竞争的结果,或者与降低金属离子路易斯酸度的其他因素竞争的结果。在这些二聚体的情况下,n-n:相互作用本身似乎大大降低了锌对外部配体的亲和力。Zn,(l)对4-叔丁基吡啶第一分子的亲和力高于吡啶本身,这大概反映了取代配体的碱度更高;两个 K 值的比率正好是 pK 的预期值,相差 0.6 个单位。我们的证据表明,金属化增强了卟啉-卟啉的相互作用和随之而来的聚集。这种增强已经用金属离子对卟啉n:-系统的极化来解释.36似乎金属-卟啉相互作用越大,n-n:堆积力就越大。金属离子配位的电子效应是减少金属-卟啉的相互作用。因此,金属对卟啉的极化降低,因此,在Zn2(2).吡啶络合物等情况下,n:-n:与另一面的相互作用略有减弱。为了支持这一点,荧光结果表明,与吡啶与Zn结合相比,更碱性的配体(4-烷基吡啶)的结合在更大程度上减少了Zn,(l)中的n:n:相互作用,(2)。 然而,显然,金属的配位饱和度本身并不能防止聚集。我们最近报道了一些新的大环卟啉二聚体的合成,这为支持这些观点提供了额外的证据。'桥接基团足够长,可以覆盖卟啉并产生单体物种。在二聚体合成过程中,相应的加帽物种是 * 这些加帽基团足够小,它们甚至可以与镁卟啉堆叠,镁卟啉与两个轴向配体配位(C.A. H. 和 J. K. M. S.;未发表的结果)。55 1 确实产生了,并且发现加帽化合物的产量在很大程度上取决于加帽和卟啉之间 N:-N 相互作用的强度:即使在存在大量过量的 N,N-二甲基-4-氨基吡啶的情况下,使用锌卟啉也大大提高了加帽化合物的产量。 尽管吡啶衍生物对锌进行了配位,但相对于无金属体系,N-堆积增强了。Zn,(l) 和 Zn,(2) 与双功能配体的配位化学提供了进一步的佐证证据:适当大小的单个分子将结合在每个二聚体中两个卟啉之间的空腔中,诱导 Zn,(l)-吡啶系统表现出的所有分解现象。这些结果将在今后的报告中讨论。结论 碱性配体对金属卟啉的分解具有较小的电子成分,但主要由空间因子主导。因此,似乎不可能通过配体配位的电子效应对卟啉-卟啉的相互作用和构象进行微妙的控制。相反,这种控制必须建立在大环的共价结构中。实验 在Pye-Unicam PU 8800光谱仪上用1cm x 1cm的比色皿记录卟啉~sly.~'的紫外/可见电子吸收光谱。所有测量均在二氯甲烷溶液上进行,约在卟啉中。使用 Perkin-Elmer 3000 光谱仪在 1 cm x 1 cm 比色皿中的二氯甲烷溶液上记录发射光谱。该装置最初经过严格的清洁和干燥,二氯甲烷是从氢化钙中蒸馏出来的。将准确测定的约0.5M吡啶溶液配制成1ml容量瓶中,并以5 pl等分试样和10 pl Hamilton 800系列注射器加入卟啉样品中。在滴定结束时,将纯吡啶加入 1 pl 等分试样。对结果的分析允许滴定过程中发生的体积变化。滴定数据通过Macintosh SE微型计算机上的图形和曲线拟合程序进行分析。曲线拟合程序基于 A. Crawford 博士编写的单纯形例程。'H N.m.r. 光谱是在布鲁克 AM-400 和 WM-250 光谱仪上记录的。数据累积在 16K 个数据点上,光谱宽度为 12 p.p.m。在氘代氯仿或氘代二氯甲烷溶液中获得光谱。致谢 我们感谢 D.E.N.I. (C. A. H.) 和 S.E.R.C. (P. L.) 的财政支持,A. 博士。Crawford 负责曲线拟合程序,R. J. Abraham 教授负责环电流计算。参考文献 1 C. A. Hunter, M. N. Meah, and J. K. M. Sanders, J. Chem. Soc., Chem. Commun., 1988, 692 and 694.2 (a)J. P. Collman, A.0.Chong, G. B. Jameson, R. T. Oakley, E. Rose, E. R. Schmittou and J. A. Ibers, J. Am. Chem. Soc., 1981,103,516;(b) A.D.汉密尔顿,J.-M.Lehn 和 J. L. Sessler, J. Chem. Soc., Chem. Commun., 1984, 311;(c) A.D.汉密尔顿,J.-M.Lehn 和 J. L. Sessler, J. Am. Chem. SOC.,1986, 108, 5158;(d)B. B. Wayland, S. L. Van Voorhees, and K. J. Del Rossi, 同上, 1987, 109, 6513;(e)J. P. Collman, J. I. Brauman, J. P. Fitzgerald, P. D. Hampton, Y.Naruta, J. W. Sparapany, and J. A. Ibers, 同上, 1988, 110, 3477;(f)J.P.Collman、J.I.Brauman、J.P.Fitzgerald、P.D.Hampton、Y.Naruta和T.Michida, Bull。化学 SOC.Jpn, 1988, 61, 47.3 (a)R. J. Abraham, F. Eivasi, H. Pearson, and K. M. Smith, J. Chem. Soc., Chem. Commun., 1976,698 and 699;(b)R. J. Abraham, S. C. M. Fell, H. Pearson, and K. M. Smith, Tetrahedron, 1979,35, 1759;(c)P. Leighton, J. A. Cowan, R. J. Abraham, and J. K. M. Sanders, J. Org. Chem., 1988, 53, 733, 4 (a) W. B. Person, J. Am. Chem. Soc., 1965, 87, 167;(b) D.A.Deranleau,同上,1969年,第91页,第4050页。J. CHEM. SOC. PERKIN 译.I 1989 5 A. V. Hill, J. Physiol. London, 1910, 40, IV-VII.6 R. J. Abraham, P. Leighton, and J. K. M. Sanders, J. Am. Chem. SOC.,1985, 107, 3472.7 M. Kasha, H. R. Rawls, and M. A. El-Bayoumi, Pure Appl.化学, 1965, 11, 371.8 R. J. Harrison, B. Pearce, G.S. Beddard, J. A. Cowan, and J. K. M. Sanders, Chem. Phys., 1987, 116,429.收稿日期:1988年7月8日;文件 8/02746C

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号