首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Pyrrolizidine alkaloid analogues. Synthesis of 11-membered macrocyclic diesters of (+)-heliotridine
【24h】

Pyrrolizidine alkaloid analogues. Synthesis of 11-membered macrocyclic diesters of (+)-heliotridine

机译:吡咯里西啶生物碱类似物。(+)-嘧啶的11元大环二酯的合成

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. I 1988 Pyrrolizidine Alkaloid Analogues. Synthesis of 1I -Membered Macrocyclic Diesters of (+)-Hehotridhe Desmond B. Hagan and David J. Robins* Department of Chemistry, University of Glasgow, Glasgo w G 12 8QQ The first synthesis of macrocyclic diesters incorporating (+)-heliotridine has been achieved. Treatment of (+) -heliotridine (1) with different glutaric anhydride derivatives produced mainly the corresponding 9-monoesters of heliotridine. Lactonisation was carried out after formation of the pyridine-2-thiol esters to give a range of 1 1 -membered macrocyclic diesters (4)-(8) of heliotridine. The structures of these new pyrrolizidine alkaloid analogues were established by comparison of their 'H n.m.r. and mass spectra with those of natural macrocyclic pyrrolizidine alkaloids.Attempts to make 10-membered macrocyclic diesters of heliotridine were unsuccessful. Many pyrrolizidine alkaloids occur as macrocyclic diesters with a pyrrolizidine diol or trio1 in combination with a diacid moiety.'q2 The majority of these dilactones contain (+)-retronecine (2) as the base portion and are hepatotoxic. The structural requirements for toxicity are a pyrrolizidine nucleus combined with an allylic ester function as in ester (3).3 The toxic action is believed to involve oxidation of the 2,5-dihydropyrrole system to the corresponding pyrrole by liver oxidase enzymes. These pyrrole metabolites can then act as alkylating agents by displacement of the ester group assisted by the pyrrole system.The most toxic alkaloids and analogues are macrocyclic diesters of (+)-retronecine (2) which can act as bifunctional alkylating agents involving removal of both ester groups. Synthetic routes to macrocyclic alkaloids and struc- turally related analogues are required for the study of the structure-activity relationships in this area. Synthesis of macrocyclic pyrrolizidine alkaloids has been restricted to a few containing ( +)-retronecine, namely (+)-dicrotaline: (*)-(f~lvine,~ )-crispatine,' integerrimine,6 and the 0-acetyl derivative of crobarbatine.' Some 1 1-membered8 and 10-membered analogues containing (+)-retronecine have also been prepared. Although a large number of monoester and diester deriva- tives of ( +)-heliotridine (1) have been isolated,' it is curious that no macrocyclic diesters of this base have so far been found.We therefore decided to discover if macrocyclic diesters of (+)-heliotridine could be prepared, so that their toxicity could be evaluated. Results and Discussion Cynogfossumojjcinafeis known as the hound's tongue from the shape of its leaves. It is reported to contain a mixture of pyrrolizidine alkaloids, which are all monoesters or diesters of (+)-heliotridine (l).' A cultivar of this species produced echinatine (3) as the major (95) alkaloidal constituent. (+)-Echinatine was identified by comparison of its spectroscopic properties and rotation with literature values.' Alkaline hydrolysis of echinatine (3),or the total alkaloid mixture yielded (+)-heliotridine (1).Treatment of ( +)-heliotridine (1) with 3,3-dimethylglutaric anhydride in dry 1,2-dimethoxyethane (DME) gave a quanti- tative yield of monoesters of (+)-heliotridine. Diester formation was not observed, probably because the initial monoester products are zwitterionic and precipitate from DME. Indeed, the completeness of this step is most conveniently monitored on t.1.c. by the disappearance of (+)-heliotridine. The 'H n.m.r. spectrum of the precipitate in deuteriomethanol showed signals 6 543 (1) R = H (2) R = H, 78 -OH for the 9-monoester at 6 4.26 (7-H), 4.40 and 4.71 (2 H, AB system, 9-H,), and 5.53 (2-H) and for the 7-monoester at 6 5.00 (7-H), 4.31 (2 H, s, 9-H,), and 5.50 (2-H).From the appearance and integrations of these signals" the ratio of 9- to 7-monoesters is 4: 1. Lactonisation of the mixture of monoesters was achieved uia the pyridine-2-thiol esters. These were prepared by addition of 2,2'-dithiodipyridine and triphenyl- phosphine to a suspension of the heliotridine monoesters in DME." The mixture was stirred vigorously until a homo-geneous solution was obtained and formation of the thiol esters was complete. Lactonisation was carried out by heating the diluted mixture at reflux in DME for 14 h. Isolation and purification of the dilactone by column chromatography on basic alumina afforded a 61 yield of the crystalline (3,3- dimethylglutary1)heliotridine (4). An accurate mass measure- ment on the base (4) gave the molecular formula C15H21N04.Furthermore, in the mass spectrum of the dilactone (4), the fragmentation pattern was similar to those recorded for macrocyclic diesters of (+)-retronecine (2). The major frag- ments at m/z 137,136,120,119,118, and 117 arise by cleavage of the allylic ester and subsequent loss of the diacid portion. An important feature of the 'H n.m.r. spectrum of the dilactone (4) in deuteriochloroform is an AB system at 6 4.44 and 5.05 due to the diastereotopic protons at C-9. The chemical shift difference of 0.61 p.p.m. for these C-9 protons is within the typical range observed for 1 1-membered macrocyclic diesters of ( +)-retro-necine.'.' The distinctive mass spectrum of the base (4) together with the appreciable non-equivalence of the protons at C-9 are good evidence for the formation of an 1 1-membered macro- cyclic diester of (+)-heliotridine (1).Similar treatment of (+)-heliotridine (1) with tetramethyl- eneglutaric anhydride and with pentamethyleneglutaric anhy- dride produced two more crystalline macrocyclic diesters (5) and (6) in 57 and 41 yields, respectively. Significant non- J. CHEM. SOC. PERKIN TRANS. I 1988 equivalence of the protons at C-9 in their 'H n.m.r. spectra was observed of 0.49 p.p.m. for the dilactone (5) and 0.74 p.p.m. for the dilactone (6).A much lower chemical shift difference of 0.12 p.p.m. was recorded for the analogue (7), which was prepared by lactonisation of (+)-heliotridine with glutaric anhydride.The dilactone (7)was isolated as an oil, which could not be crystallised, in 41 yield. (4) R' = R* =Me (8) a; R' = Me, R2 = H (5) R' RZ = (CHZI4 b: R' = H, RZ = Me (6) R'P RZ = (CH,), (7) R1= R2 = H Attempts were made to prepare macrocyclic diesters of (+)-heliotridine containing 10-membered rings. Treatment of (+)-heliotridine (1) with succinic anhydride and formation of the pyridine-2-thiol esters proceeded normally. When these esters were heated at reflux in DME under high dilution conditions, t.1.c. data was obtained for the formation of the succinyl- heliotridine but no cyclised product could be isolated. When phthalic anhydride was used in this procedure, no evidence was obtained for the formation of a macrocyclic dilactone.Models of the 10-membered macrocyclic diesters of (+)-heliotridine indicated that there may be unfavourable steric interactions in the macrocyclic systems. Finally, it was decided to prepare dilactones (8) with substituents at the a-positions of the diacid portion to create steric hindrance around these positions in the dilactones. This is expected to enhance the toxicity of these compounds by reducing their tendency to be detoxified by hydrolysis. Accordingly, reaction of meso-2,4-dimethylglutaric anhydride with (+)-heliotridine and subsequent lactonisation via the pyridine-2-thiol esters yielded a mixture of two diastereoisomers (8)which could not be separated. However, consideration of the 'H and I3C n.m.r.spectra of the mixture (8)indicated that the diastereoisomers are present in a ratio of 2:1, and that the chemical shift differences for the C-9 protons are 0.17 p.p.m. for the major isomer and 0.29 p.p.m. for the minor component. The different chemical shift differences for the C-9 protons of the new pyrrolizidine alkaloid analogues (4H8) are believed to reflect the different conformations of the diacid portions in these macrocyclic systems. X-Ray data on 1 1-membered macro- cyclic diesters of retronecine (2) have shown that most have ester carbonyl groups that are synperiplanar, while for 12 membered dilactones of retronecine, the ester carbonyl groups are antiperiplanar.' It is important to establish the conforma- tions of these macrocyclic compounds because they may favour oxidation of the 2,5-dihydropyrrole rings to the toxic pyrrole metabolites rather than detoxification processes of N-oxidation or hydrolysis of the lactones.Attempts will be made to establish the conformations of some of these new alkaloid analogues by X-ray crystallography. The toxicity of these 1 1 -membered pyrrolizidine alkaloid analogues will also be investigated. Experimental M.p.s were measured with a Kofler hot-stage apparatus. Organic solutions were dried with anhydrous Na,S04, and solvents were evaporated off under reduced pressure below 50 "C. N.m.r. spectra were recorded for solutions in deuterio- chloroform with tetramethylsilane as the internal standard on a Bruker WP-200 SY spectrometer operating at 200 MHz unless otherwise stated.Mass spectra were obtained with A.E.T. MS 12 or 902 spectrometers. Optical rotations were measured with an Optical Activity Ltd. AA- 1010 Polarimeter. T.1.c. of the bases was carried out on Kieselgel G plates of 0.25- mm thickness developed with chloroform-methanokonc. am- monia (85: 14: 1). The location of the bases was carried out by oxidation with o-chloranil, followed by treatment with Ehrlich's reagent. 1,2-Dimethoxyethane (DME) was dried by distill- ation from potassium hydroxide and then from sodium and benzophenone under argon immediately prior to use. Cyno-gfossum ofJicinaleseeds were obtained from Suttons Seeds Ltd. and plants were grown in the open ground. ( +)-Echinatine (3).-Freshly harvested young C.ofJicinale (5 kg) were soaked overnight in methanol and extracted repeat- edly with methanol until the extracts were colourless. The combined methanol extracts were concentrated under reduced pressure. The residue was taken up in methylene chloride (100 ml) and extracted with 2hl-sulphuric acid (2 x 100 ml). The combined acidic layers were washed with methylene dichloride (4 x 100ml) and stirred with powdered zinc metal (10 g) for 4 h. After having been filtered through Celite 535, the solution was made alkaline with conc. ammonia and extracted with chloro- form (4 x 100 ml). The aqueous solution was basified more strongly by the addition of potassium hydroxide and extracted with chloroform (4 x 100 ml).The combined chloroform extracts were dried, filtered, and concentrated to a light brown foam, which contained one major component, R, 0.30. Puri- fication by chromatography on basic alumina and elution with 25 v/v chloroform in dichloromethane gave echinatine (3)as a gum, (5.06 g, 0.1), a:' + 12.3" (cO.94, CHC1,) (lit.," 0l6' + 15.0"); vmax.(thin film) 3 400, 2 973, 2 936, 2 885, 1 728, and 1 230 cm-'; 6,0.89 and 0.93 (6 H, both d, J 6.8 Hz, 16- and 17- H3), 1.27 (3 H, d, J6.6 Hz, 14-H,), 1.86 (1 H, m, 6-H), 1.96 (1 H, m,6-H),2.18(1H,dq,J6.8Hz,15-H),2.62(1H,ddd,J10.7,7.0, and 6.1 Hz, 5-H), 3.27 (1 H, dd, J 10.8 and 6.5 Hz, 5-H), 3.37 (1 HYdd,J3.0and 1.5Hz,3-H),3.60(1 H,brs,OH),3.88(1 H,dd, J3.1 and1.5Hz,3-H),3.97(1 H,m,8-H),3.99(1H,q,J6.6Hz7 13-H), 4.01 (2 H, br s, 2 x OH), 4.15 (1 H, dt, J 6.0 Hz, 7-H), 4.79 and 4.96 (2 H, AB system, J 13.4 Hz, 9-H,), and 5.70 (1 H, br s, 2-H); 6,(50 MHz) 15.7 and 17.8 (C-16 and C-17), 17.2 (C- 14), 32.2 (C-l5), 33.5 (C-6), 54.2 (C-5), 61.7 (C-3), 62.0 (C-9), 71.6 (C-13), 74.2 (C-7), 79.7 (C-8), 84.1 (C-12), 125.6 (C-2), 136.1 (C- l), and 173.9 (C-11); m/z299 (M', 473, 156, 139, 138 (loo), 137, 136, 120, and 95 (Found: M', 299.1735; C, 60.6; H, 8.21; N, 4.35.C,,H,,NO, requires M, 299.1732; C, 60.18; H, 8.42; N, 4.68). The picrolonate* had m.p. 210-212 "C (lit.," 214 "C) (Found: C, 53.4; H, 6.1; N, 12.6. C,,H,3N,0,0 requires C, 53.3; H, 5.9; N, 12.4). (+)-Heliotridine (l).-Echinatine (1.02 g, 3.39 mmol) was heated at reflux with barium hydroxide (2.00 g, 11.67 mmol, 3.44 equiv.) in water (25 ml) for 4h.Solid carbon dioxide was added to the cooled solution which was then filtered. The filtrate was basified to pH 10 with potassium hydroxide and continuously extracted with chloroform for 48 h to yield (+)-heliotridine (450 mg, 85)m.p. 116-1 17 "C (acetone) (lit.," m.p. 115-1 16 "C); a;' +26.6" (c 1.2, MeOH) (lit.," a;' +30.0deg;, c 1.6, MeOH); v,,,.(KBr) 3 340,2 880,2 620, and 2 480cm-'; 6,1.91 (2 H, m, 6- H2), 2.64 (1 H, dt, J 10.8 and 6.5 Hz, 5-H), 3.24 (1 H, dt, 10.7 and 6.2 Hz, 5-H), 3.36 (1 H, m, 3-H), 3.80-4.15 (2 H, br s, 2 x OH), * Picrolinic acid = 3-methyl-4-nitro-1-(p-nitrophenyl)pyrazol-5-ol. J. CHEM. SOC. PERKIN TRANS. I 1988 3.85 (1 H, dd, J 15.5and 1.9 Hz, 3-H), 3.99 (1 H, m, 8-H), 4.05 (1 H, dt, J5.7 and 4.5 Hz, 7-H),4.28 (2H,s,9-H2), and 5.50(1 H, d, J 1.5 Hz, 2-H); 6,(50 MHz) 33.0 (C-6), 53.5 (C-5), 58.6 (C-9), 61.4 (C-3), 74.2 (C-7), 79.3 (C-8), 121.8 (C-2), and 140.9 (C-1); nz/=155(M ', 13),lll,and80(100)(Found:M+, 155.0951;C, 62.18; H, 8.51; N, 9.05. C,H,,NO, requires M, 155.0946; C, 61.91; H, 8.44; N, 9.03).The solution was acidified with 4~-hydrochloric acid solution and continuously extracted with diethyl ether for 48 h to yield (-)-viridifloric acid (440 mg, 80), m.p. 120-121 "C ethyl acetate-light petroleum (b.p. 40-60 "C) (1 : l) (lit.,', m.p. 119-120deg;C); xP -2.1" (c 3.0, water) (lit.,14 a -2.2", c 1.1, water); v,,, (CHCI,) 2 966, 2 566, and 1 705 cm-'; 6,(90 MHz) 0.93 (3 H, d, J6.6 Hz, 6-or 7-H,), 0.95 (3 H, d, J6.6 Hz, 7- or 6-H3),1.21 (3 H, d, J7.0 Hz, 4-H,), 2.05 (1 H, m, 5-H), 4.02 (1 H, q, J7.0 Hz, 3-H), 4.20 (2 H, br s, OH), and 8.70 (1 H, br s, C0,H); 6,(25 MHz) 16.0 and 16.8 (C-6 and -7), 17.5 (C-4), 32.0 (C-5), 71.2 (C-3),83.8 (C-2), and 177.9 (C-1); m/z 118 (M+,4473, 103, 85, 57, 56, 45, and 43 (100) (Found: M', 118.0998; C, 51.73; H, 8.87",,.C,H,,O, requires M, 118.0995; C, 51.82; H, 8.70).Gencd Procedure jor the Synthesis of Dilactones (4)-@).-The anhydride (0.35 mmol) was added to a solution of (+)-heliotridine (1) (0.30 mmol) in DME (10 ml) under N,. After 24 h, triphenylphosphine (0.60 mmol) and 2,2'-dithiodipyridine (0.60 mmol) were added, and the mixture was stirred vigorously for 48 h.The homogeneous solution was transferred by syringe over 15 min to DME (1 50 ml) heated at reflux under N,. Heating at reflux was continued for 14 h. The solution was cooled and concentrated to an oil which was dissolved in chloroform (10 ml). The chloroform solution was extracted with 1hi-citric acid (4 x 8 ml). The acidic solution was washed with chloroform (4 x 10 ml) and made alkaline with conc. ammonia. The basic solution was extracted with chloroform (4 x 15 ml). The chloroform extracts were dried, filtered, and concentrated to an oil, which was purified by chromatography on basic alumina and elution with dichloro- methane (4) and (6), or with increasing proportions (5-20':) of chloroform in dichloromethane (5), (7), and (S).( + )-7,9-0.0'-(3,3-Dimerhy(glutaryl)heliotridine (4) was ob- tained as needles, m.p. 90-92 "C (cyclohexane) (55 mg, 61); R, 0.53; x6' + 9.6" (C 2.7, CHCl,); v,,,,(CHC~,) 2 955, 2 923, 1 733, I 415, and 1 258 cm-'; 6,1.20 (6 H, s, 17-H, and 18-H3), 1.89 (1 H, m, 6-H), 2.14 and 2.39 (2 H, AB system, J 13.3 Hz, 12- or 14-H2), 2.18 and 2.29 (2 H, AB system, J 14.9 Hz, 14- or 12-H,), 2.34 (1 H, m, 6-H), 2.59 (1 H, ddd, J 12.3,9.7 and 5.5 Hz, 5-H),3.37(1 H,d,J15.3Hz,3-H),3.39(1 H,dd,J9.4and7.5Hz,5- H), 3.87 (I H. dd, J 15.5 and 1.4 Hz, 3-H), 4.00 (1 H, m, 8-H), 4.44 and 5.05 (2 H, AB system, J 13.0 Hz, 9-H,), 4.71 (1 H, ddd, J 12.7, 8.3, and 8.2 Hz, 7-H), and 5.62 (1 H, s, 2-H); Fc(50 MHz) 29.5 and 30.4 (C-17 and -IS), 32.9 (C-6), 33.6 (C-13), 44.1 and 44.9 (C-12 and -14), 54.1 (C-5), 59.8 and 62.4 (C-3 and -9), 74.2 (C-7), 79.7 (C-8), 125.9 (C-2), 136.5 (C-1), and 170.9 and 171.7 (C-11 and-I5);miz279(M+, 18), 137,136,120,119(100), 118, and 117 (Found: M', 279.1469; C, 64.65; H, 7.8; N, 4.5.C 5H2 NO, requires M, 279.1470; C, 64.49; H, 7.58; N, 5.01",). ( + )-7,9-0.O'-( 3,3- Tetramethyleneg1utaryl)heliotridine (5)was obtained as prisms, m.p. 94-96 "C (cyclohexane) (56 mg, 572));R, 0.75: XI;' + 7.88" (C 3.3, CHCI,); v,,,,(CHCI,) 2 965, 2 915, 1 745, I 438, and 1 178 cm-'; 6, 1.15-1.82 (8 H, m, 17-, 18-, 19-, and 20-H,), 1.8(t-2.08 (1 H, m, 6-H), 2.30-2.45 (4 H, (C-7), 76.2 (C-8), 124.1 (C-2), 136.3 (C-1), and 171.2 and 171.9 (C-11 and -15); mjz 305 (M', 5), 278,277 (loo), 199,185,136, 120, and 119 (Found: M', 305.1631; C, 66.65; H, 7.7; N, 4.85.C,,H,,NO, requires M, 305.1627; C, 66.86; H, 7.59; N, 4.59). ( +)-7,9-0,O'-(3,3-Pentamethyleneg1utaryl)heliotridine (6) was obtained as needles, m.p. 101-102 "C (cyclohexane) (49.1 mg, 41); R, 0.69; a;' +6.0" (c 5.0, CHCl,); v,,,.(CHCI,) 2 934,l 732, 1 454, 1 231, and 1 158 cm-'; 6, 1.33-1.72 (10 H, m, 17-, 18-, 19-, 20-, and 21-H,), 1.80-2.05 (2 H, m, 6-H,), 2.27 and 2.38 (2 H, AB system, J 15.1 Hz, 14- or 12-H,), 2.30 and 2.43 (2 H, AB system, J 13.5 Hz, 12- or 14-H2), 2.62 (1 H, ddd, J 12.5, 9.7, and 5.5 Hz, 5-H), 3.40 (1 H, d, J 14.5 Hz, 3-H), 3.41 (1 H, dd, J9.7 and 7.5 Hz, 5-H), 3.85 (1 H, m, 3-H), 4.01 (1 H, m, 8-H),4.41 and 5.15 (2 H, AB system, J 12.9 Hz, 9-H,), 4.72 (1 H, ddd, J 10.8, 8.3, and 6.3 Hz, 7-H), and 5.66 (1 H, s, 2-H); 6,(50 MHz) 21.5 and 21.6 (C-18 and -20), 25.8 (C-19), 32.2 (C-6), 36.4 (C-13), 37.0 and 37.9 (C-17 and C-21), 41.9 and 42.4 (C-12 and -14), 54.2 (C-5), 59.8 and 62.6 (C-3 and -9), 75.8 (C-7), 77.5 (C-8), 126.3 (C- 2), 136.7 (C-1), 171.1 (C-15), and 177.1 (C-11); mjz 319 (M+, 673277,149,136,120, and 119 (100) (Found: M+,319.1784; C, 67.5; H, 7.6; N, 4.55.C,,H,,NO, requires M, 319.1783; C, 67.69; H, 7.89; N, 4.39). ( + )-7,9-O,O'-(Glutavyl)heliotridine(7) was obtained as a pale yellow oil which could not be crystallised (20 mg, 41); R, 0.51; ct6' +3.3" (C 1.2, CHCI,); v,,,.(CHCI,) 2 980, 2 935, 1735, 1278, and 1 183 cm-'; 6, 1.12-1.34 (2 H, m, 13-H2), 1.43-1.60 (1 H, m, 6-H), 2.00-2.1 1 (2 H, m, 12-and 14-H), 2.24-2.64 (4 H, m, 5-,6-, 12-, and 14-H), 3.41 (1 H, d, J 10.0 Hz, 3-H), 3.56 (1 H, m, 5-H), 4.05 (1 H, dd, J 10.1 and 1.5 Hz, 3-H), 4.18 (1 H, m, 8-H), 4.82 and 4.94 (2 H, AB system, J 15.0 Hz, 9- H2), 5.01 (1 H, ddd, J9.7, 7.7, and 7.5 Hz, 7-H), and 5.53 (1 H, s, 2-H); 6,(50 MHz) 20.9 (C-13), 31.9 (C-6), 33.6 and 34.7 (C-12 and -14), 53.8 (C-5), 61.0 and 61.8 (C-3 and -9), 75.5 and 75.6 (C- 7 and -8), 122.1 (C-2), 137.1 (C-1), and 172.6 and 172.7 (C-11 and -15); m/z 251 (M+,13), 136, 120, 119, 93, and 59 (100) (Found: M+,251.1158; C, 61.9; H, 6.6; N, 5.85.C,,H,,NO, requires M, 251.1157; C, 62.14; H, 6.82; N, 5.57). The picrolonate had m.p.192--194deg;C (Found: C, 53.5; H, 4.6; N, 13.65. C,,H,,N,O, requires C, 53.59; H, 4.85; N, 13.59). 7.9-0,0'-(2R,4S)-Dimethylglutarylheliotridine(8a) and 7,9-0,0'-(2S,4R)-Dimethylglutarylheliotridine (8b) were obtained as a mixture of diastereoisomers which could not be separated (1 5.3 mg, 40); R, 0.55; v,,,,(CHCl,) 2 963, 2 930, 1 734, 1 456, 1260, and 1 184 cm-'; 6, 1.09-1.42 (6 H, m, 17-and 18-H,), 1.46 (1/3 H, m, 13-H), 1.51 (2/3 H, m, 13-H), 1.95-2.63 (6 H, complex, 5-, 12-, 13-, 14-H, and 6-H,), 3.30-3.45 (2 H, m, 3-and 5-H), 3.86 (2/3 H, m, 3-H), 3.92 (1/3 H, m, 3-H), 4.15 (2/3 H, m, 8-H), 4.30 (1/3 H, m, 8-H), 4.61 and 4.90 (2/3 H, AB system, J 14.0 Hz, 9-H2), 4.73 and 4.90 (4/3 H, AB system, J 14.1 Hz, 9-H,), 4.86 (1/3 H, m, 7-H), 5.08 (2/3 H, ddd, J 13.0,8.9,and 6.3 Hz, 7- H), 5.45 (1/3 H, s, 2-H), and 5.55 (2/3 H, s, 2-H); 6,(50 MHz) 17.9,18.2,19.4,and 19.6 (C-17and -18), 31.9 and 32.0 (C-6), 38.8 and 39.7 (C-13), 39.2, 39.4, 39.6, and 39.7 (C-12 and -14), 53.8 and 53.9 (C-5), 60.5,61.6, and 62.1 (C-3 and -9), 75.1, 75.2, 75.5, and 75.8 (C-7 and -8), 120.6and 122.9 (C-2), 137.3 and 137.7 (C- l), and 174.8, 175.2, 175.6, and 175.7 (C-11 and -15); m/z 279 (M', llx), 206, 136, 120, 119 (loo), and 117 (Found: M', 279.1474; C, 64.65; H, 7.7; N, 4.85. C,,H,,NO, requires M: 279.1470; C, 64.49; H, 7.58; N, 5.01).m, 12-and 14-H,), 2.48-2.61 (1 H, m, 6-H), 2.85-3.00 (1 H, m, 5-H),3.42(1 H,d,J15.0Hz,3-H),3.57(1H,m,5-H),4.01(1H, d, J 14.8 Hz, 3-H), 4.08 (1 H, m, 8-H), 4.56 and 5.05 (2 H, AB system,J13.5Hz,9-H2),4.80(1H,ddd,Jl2.9,8.1,and7.5Hz,7-AcknowledgementsH), and 5.62 (1 H, s, 2-H); 6,(50 MHz) 23.2 and 23.9 (C-18 and -We thank the Carnegie Trust for the Universities of Scotland 19), 31.7 (C-6). 34.2 and 35.2 (C-17 and -20), 44.1 and 44.4 (C-12 for a Scholarship (to D. B.H.), and Dr. D. S. Rycroft for run- and -14),45.0 (C-13), 53.9 (C-5),59.8 and 61.7 (C-3 and -9), 69.1 ning the 200 MHz n.m.r. spectra. References 1 D. J. Robins, Fortschr. Chem. Org. Naturst., 1982, 41, 11 5. 2 D. J. Robins, Nut. Prod. Rep., 1984, 1,235; 1985,2, 213; 1986,3, 297. 3 A. R. Mattocks, lsquo;Chemistry and Toxicology of Pyrrolizidine Alkaloids,rsquo; Academic Press, London, 1986. 4 K. Brown, J. A. Devlin, and D. J. Robins, J.Chem. Soc., Perkin Trans. I, 1983, 1819. 5 E. Vedejs and S. D. Larsen, J. Am. Chem. Soc., 1984, 106, 3030. 6 K. Narasaka, T. Sakakura, T. Uchimaru, and D. Guedin-Vuong, J. Am. Chem. Soc., 1984,106,2954;H. Niwa, Y. Miyachi, Y. Uosaki, A. Kiroda, H. Ishiwata, and K. Yamada, Tetrahedron Lett., 1986, 27, 4609; J. D. White and S. Ohira, J. Org. Chem., 1986, 51, 5494. 7 J. Huang and J. Meinwald, J. Am. Chem. Soc., 1981, 103, 861. 8 J. A. Devlin, D. J. Robins, and S. Sakdarat, J. Chem. Soc., Perkin Trans. I, 1982, 1117. J. CHEM. SOC. PERKIN TRANS. I 1988 9 M. Burton and D. J. Robins, J. Chem. Soc., Perkin Trans. I, 1985, 61 1. 10 H. C. Crowley and C. C. J. Culvenor, Aust. J. Chem., 1959, 12, 694. 11 W. M. Hoskins and D. H. G. Crout, J.Chem. Soc., Perkin Trans. I, 1977, 538. 12 E. J. Corey and K. C. Nicolaou, J. Am. Chem. Soc., 1974,96, 5614. 13 H. J. Huizing, F. DeBoer, and T. M. Malingrk, J. Chromatogr., 1980, 195, 407; R. J. Molyneux and J. N. Roitman, ibid., p. 142. 14 C. C. J. Culvenor and L. W. Smith, Aust. J. Chem., 1967, 20, 2499. Received 28th May 1987; Paper 7/940
机译:J. CHEM. SOC. PERKIN 译.I 1988 吡咯里西啶生物碱类似物。(+)-Hehotridhe 的 1I 元大环二酯的合成 Desmond B. Hagan 和 David J. Robins* 格拉斯哥大学化学系,格拉斯哥 w G 12 8QQ 首次合成了含有 (+)-天芥啶的大环二酯。用不同的戊二酸酐衍生物处理(+)-天冬啶(1)主要产生相应的9-单酯的日绛三啶。在吡啶-2-硫醇酯形成后进行内酯化,得到一系列 1 1 元大环二酯 [(4)-(8)] 的日绛三烷。通过比较这些新的吡咯里西啶生物碱类似物的结构,将其'H、n.m.r.和质谱图与天然大环吡咯里西啶生物碱的结构进行比较。试图制造天冬啶的10元大环二酯没有成功。许多吡咯里西啶生物碱以大环二酯的形式出现,吡咯里西啶二醇或三1与二酸部分结合。毒性的结构要求是吡咯里西啶核与烯丙基酯官能团结合[如酯(3)].3 毒性作用被认为涉及肝氧化酶将 2,5-二氢吡咯系统氧化为相应的吡咯。然后,这些吡咯代谢物可以通过在吡咯系统的辅助下置换酯基来充当烷基化剂。毒性最强的生物碱和类似物是 (+)-逆转录碱 (2) 的大环二酯,可作为双功能烷化剂,涉及去除两个酯基。研究该领域的构效关系需要大环生物碱和结构相关类似物的合成路线。大环吡咯里西啶生物碱的合成仅限于少数含有(+)-逆转录碱的生物碱,即(+)-双氯他啉:(*)-(f~lvine,~ )-crispatine'整数胺,6和巴巴汀的0-乙酰基衍生物。还制备了一些含有(+)-逆转录新碱的1,1元8和10元类似物。虽然已经分离出大量的(+)-天芥啶(1)的单酯和二酯衍生物,但奇怪的是,到目前为止还没有发现这种碱的大环二酯。因此,我们决定研究是否可以制备(+)-天冬啶的大环二酯,以便评估其毒性。结果与讨论 Cynogfossumojjcinafeis 因其叶子的形状而被称为猎犬的舌头。据报道,它含有吡咯里西啶生物碱的混合物,这些生物碱都是(+)-天冬啶(l)的单酯或二酯。该物种的一个品种产生紫锥菊 (3) 作为主要 (>95%) 生物碱成分。(+)-紫锥菊是通过比较其光谱特性和旋转与文献值来鉴定的。碱性水解紫锥菊(3),或总生物碱混合物得到(+)-天冬啶(1)。在干燥的1,2-二甲氧基乙烷(DME)中用3,3-二甲基戊二酸酐处理(+)-天芥啶(1)得到(+)-日利嗪三胺单酯的定量产率。没有观察到二酯的形成,可能是因为最初的单酯产物是两性离子的,并且从二甲醛沉淀出来。事实上,这一步的完成性在t.1.c上得到了最方便的监控。通过(+)-日廖三胺的消失。氘代甲醇中沉淀物的'H n.m.r.谱图显示信号为6 543 (1) R = H (2) R = H, 78 -OH对于9-单酯在6 4.26 (7-H)、4.40和4.71 (2 H,AB系统,9-H,) 和5.53 (2-H, s、9-H、) 和 5.50 (2-H)。从这些信号的出现和积分来看,9-7-单酯的比例为4:1。单酯混合物的内酯化是通过吡啶-2-硫醇酯实现的。这些是通过将2,2'-二硫代二吡啶和三苯基-膦添加到二甲苯二甲酸乙烷单酯的悬浮液中制备的。剧烈搅拌混合物,直到获得均匀的溶液并完成硫醇酯的形成。通过在DME中回流加热稀释的混合物14小时进行内酯化。通过柱层析在碱性氧化铝上分离和纯化二内酯,结晶 (3,3-二甲基谷氨酸 1) 天冬啶的收率为 61% (4)。对碱基(4)进行精确的质量测量,得出分子式C15H21N04。此外,在二内酯 (4) 的质谱图中,碎裂模式与 (+)-逆转录耐碱 (2) 的大环二酯记录的碎裂模式相似。m/z 137、136、120、119、118 和 117 处的主要碎片是由烯丙酯的裂解和随后的二酸部分损失引起的。氘氯仿中二内酯 (4) 的 'H n.m.r. 谱的一个重要特征是 6、4.44 和 5.05 处的 AB 系统,这是由于 C-9 处的非对映质子。这些 C-9 质子的化学位移差为 0.61 p.p.m.,在 1 个 (+)-retro-necine 的 1 元大环二酯观察到的典型范围内。碱基 (4) 的独特质谱以及 C-9 处质子的明显不等价性是形成 (+)-天冬啶 (1) 的 1 1 元大环二酯的良好证据 (1)。用四甲基-戊二酸酐和五亚甲基戊二酸酐类似处理(+)-天冬啶(1)可产生两种结晶大环二酯(5)和(6),产率分别为57%和41%。显着非 J. CHEM. SOC. PERKIN TRANS.I 1988 年,在 'H n.m.r. 光谱中观察到 C-9 处质子的等效性为 0.49 p.p.m. 对于二内酯 (5) 和 0.74 p.p.m. 用于地内酯 (6)。类似物(7)的化学位移差异要低得多,为0.12 p.p.m.,该类似物是通过(+)-天冬啶与戊二酸酐的内酯化制备的。将二内酯(7)分离为油,不能结晶,收率为41%。(4) R' = R* =Me (8) a;R' = Me, R2 = H (5) R' RZ = (CHZI4 b: R' = H, RZ = Me (6) R'P RZ = (CH,), (7) R1= R2 = H 尝试制备含有 10 元环的 (+)-天芥啶大环二酯.用丁二酸酐处理(+)-天冬啶(1)和吡啶-2-硫醇酯的形成正常进行。当这些酯在高稀释条件下在DME中回流加热时,t.1.c.获得了琥珀酰-天芥啶形成的数据,但不能分离出环化产物。当在该过程中使用邻苯二甲酸酐时,没有获得形成大环二内酯的证据。(+)-天冬啶的10元大环二酯模型表明,大环体系中可能存在不利的空间相互作用。最后,决定在二内酯部分的 a 位置使用取代基制备二内酯 (8),以在二内酯中的这些位置周围产生空间位阻。预计这将通过减少这些化合物通过水解解毒的倾向来增强它们的毒性。因此,内消旋-2,4-二甲基戊二酸酐与(+)-天冬啶反应,随后通过吡啶-2-硫醇酯进行内酯化,产生两种非对映异构体的混合物(8),这是无法分离的。然而,对混合物(8)的'H和I3C n.m.r.谱图的考虑表明,非对映异构体以2:1的比例存在,并且C-9质子的化学位移差异为主要异构体的0.17 p.p.m.和次要组分的0.29 p.p.m.。新的吡咯里西啶生物碱类似物[(4H8)]的C-9质子的不同化学位移差异被认为反映了这些大环系统中二酸部分的不同构象。1 个 1 元大环二酯的 X 射线数据表明,大多数具有 1 个 1 元大环二酯的 X 射线数据 (2) 表明,大多数具有 2 个酯羰基是同周的,而对于 12 个元 的逆转录尼辛的二内酯,酯羰基是反平面的。确定这些大环化合物的一致性很重要,因为它们可能有利于将2,5-二氢吡咯环氧化为有毒的吡咯代谢物,而不是N-氧化或内酯水解的解毒过程。将尝试通过 X 射线晶体学确定其中一些新的生物碱类似物的构象。还将研究这些 1 1 元吡咯里西啶生物碱类似物的毒性。使用Kofler热载物台仪测量实验MP。有机溶液用无水Na,S04干燥,并在低于50“C的减压下蒸发溶剂。 除非另有说明,否则在布鲁克WP-200 SY光谱仪上记录以四甲基硅烷为内标的氘氯仿溶液的N.m.r.光谱。质谱图是用A.E.T. MS 12或902光谱仪获得的。使用Optical Activity Ltd. AA-1010旋光仪测量旋光度。碱的T.1.c.是在用氯仿-甲酮显影的0.25毫米厚的硅溶胶G板上进行的。氨(85:14:1)。碱的位置是通过用邻氯苯胺氧化,然后用Ehrlich试剂处理进行的。1,2-二甲氧基乙烷(DME)在使用前立即用氢氧化钾蒸馏干燥,然后从钠和二苯甲酮在氩气下蒸馏干燥。Jicinaleseeds 的 Cyno-gfossum 是从 Suttons Seeds Ltd. 获得的,植物生长在空地上。(+)-松果菊(3).-将新鲜收获的幼苟(5公斤)浸泡在甲醇中过夜,并用甲醇反复提取,直到提取物无色。将合并的甲醇提取物在减压下浓缩。将残留物用二氯甲烷(100ml)吸收,并用2hl-硫酸(2×100ml)提取。将合并的酸性层用二氯甲烷(4×100ml)洗涤,并用粉末状锌金属(10g)搅拌4小时。通过Celite 535过滤后,用浓缩氨使溶液呈碱性,并用氯仿(4×100ml)提取。通过加入氢氧化钾更强烈地碱化水溶液并用氯仿(4×100ml)提取。将合并的氯仿提取物干燥、过滤并浓缩成浅棕色泡沫,其中含有一种主要成分 R,0.30。通过色谱法对碱性氧化铝进行纯化,并用25%v/v氯仿在二氯甲烷中洗脱,得到松果菊(3)作为胶,(5.06 g,0.1%),[a]:' + 12.3“ (cO.94,CHC1,) (lit.,”[0l]6' + 15.0“);vmax。(薄膜)3 400、2 973、2 936、2 885、1 728 和 1 230 cm-';6,0.89 和 0.93(6 H,均为 d,J 6.8 Hz,16 和 17-H3)、1.27(3 H、d、J6.6 Hz、14-H)、1.86(1 H、m、6-H)、1.96(1 H、m、6-H)、2.18(1H,dq,J6.8Hz,15-H)、2.62(1H,ddd、J10.7、7.0 和 6.1 Hz,5-Hz)、3.27(1 H、dd、J 10.8 和 6.5 Hz、 5-H)、3.37(1 HYdd,J3.0 和 1.5Hz,3-H)、3.60(1 H,brs,OH)、3.88(1 H,dd、J3.1 和 1.5Hz,3-H)、3.97(1 H,m,8-H)、3.99(1H,q,J6.6Hz7 13-H)、4.01(2 H,br s,2 x OH)、4.15(1 H,dt,J 6.0 Hz,7-H)、4.79 和 4.96(2 H, AB 系统,J 13.4 Hz,9-H,) 和 5.70 (1 H, br s, 2-H);6、(50兆赫)15.7和17.8(C-16和C-17)、17.2(C-14)、32.2(C-l5)、33.5(C-6)、54.2(C-5)、61.7(C-3)、62.0(C-9)、71.6(C-13)、74.2(C-7)、79.7(C-8)、84.1(C-12)、125.6(C-2)、136.1(C-l)和173.9(C-11);m/z299 (M', 473, 156, 139, 138 (loo), 137, 136, 120, and 95 (发现: M', 299.1735;C,60.6;H,8.21;N,4.35%。C,,H,,NO,需要 M, 299.1732;C,60.18;H,8.42;N,4.68%)。苦皮*有m.p.210-212“C(lit.”,214“C)(发现:C,53.4;H,6.1;N,12.6。C,,H,3N,0,0 需要 C, 53.3;H,5.9;N,12.4%)。(+)-Heliotridine (l).-Echinatine(1.02g,3.39mmol)在水(25ml)中用氢氧化钡(2.00g,11.67mmol,3.44当量)回流加热4h。将固体二氧化碳加入冷却溶液中,然后过滤。滤液用氢氧化钾碱化至>pH 10,并用氯仿连续萃取48小时,得到(+)-天冬啶(450mg,85%)m.p.116-1 17“C(丙酮)(lit.,m.p.115-1 16”C);[一];'+26.6“ (c 1.2, MeOH) (lit.,” [a];' +30.0°, c 1.6, MeOH);v,,,.(KBr) 3 340,2 880,2 620 和 2 480cm-';6,1.91 (2 H, m, 6- H2), 2.64 (1 H, dt, J 10.8 和 6.5 Hz, 5-H), 3.24 (1 H, dt, 10.7 和 6.2 Hz, 5-H), 3.36 (1 H, m, 3-H), 3.80-4.15 (2 H, br s, 2 x OH), * 苦味素酸 = 3-甲基-4-硝基-1-(对硝基苯基)吡唑-5-醇。J. CHEM. SOC. PERKIN 译.I 1988 3.85 (1 H, dd, J 15.5 和 1.9 Hz, 3-H)、3.99 (1 H, m, 8-H)、4.05 (1 H, dt, J5.7 和 4.5 Hz, 7-H)、4.28 (2H,s,9-H2) 和 5.50(1 H, d, J 1.5 Hz, 2-H);6、(50 MHz)、33.0 (C-6)、53.5 (C-5)、58.6 (C-9)、61.4 (C-3)、74.2 (C-7)、79.3 (C-8)、121.8 (C-2) 和 140.9 (C-1);nz/=155(M ', 13%),lll,and80(100)(Found:M+, 155.0951;C,62.18;H,8.51;N,9.05%。C,H,,NO,需要 M,155.0946;C,61.91;H,8.44;N,9.03%)。将溶液用4~-盐酸溶液酸化,用乙醚连续萃取48 h,得到(-)-绿花酸(440 mg,80%),熔点120-121“C [乙酸乙酯-轻质石油(b.p.40-60”C)(1:l)](lit.,',熔点119-120°C);[x]P -2.1“(c 3.0,水)(lit.,14 [a] -2.2”,c 1.1,水);v,,, (CHCI,) 2 966, 2 566, 和 1 705 cm-';6、(90 MHz) 0.93 (3 H, d, J6.6 Hz, 6 或 7 H)、0.95 (3 H, d, J6.6 Hz, 7 或 6-H3)、1.21 (3 H, d, J7.0 Hz, 4-H、)、2.05 (1 H, m, 5-H)、4.02 (1 H, q, J7.0 Hz, 3-H)、4.20 (2 H, br s, OH) 和 8.70 (1 H, br s, C0,H);6、(25 MHz) 16.0 和 16.8(C-6 和 -7)、17.5 (C-4)、32.0 (C-5)、71.2 (C-3)、83.8 (C-2) 和 177.9 (C-1);m/z 118 (M+,4473, 103, 85, 57, 56, 45, and 43 (100) (发现: M', 118.0998;C,51.73;高,8.87 英寸,,.C,H,,O,需要 M,118.0995;C,51.82;H,8.70%)。Gencd程序将二内酯[(4)-@)].-将酸酐(0.35mmol)加入到(+)-天芥啶(1)(0.30mmol)在DME(10ml)中的溶液中,N,。24 h后,加入三苯基膦(0.60 mmol)和2,2'-二硫代二吡啶(0.60 mmol),将混合物剧烈搅拌48 h,将均相溶液通过注射器转移至DME(1 50 ml)中,在N下回流加热15 min。回流加热持续14小时。将溶液冷却并浓缩至溶于氯仿(10ml)中的油。用1高柠檬酸(4 x 8 ml)萃取氯仿溶液。酸性溶液用氯仿(4×10ml)洗涤,并用浓缩氨水制成碱性。用氯仿(4×15ml)提取碱性溶液。将氯仿提取物干燥、过滤并浓缩成油,通过对碱性氧化铝进行色谱纯化,并用二氯甲烷[(4)和(6)]洗脱,或以氯仿在二氯甲烷中的递增比例(5-20':)洗脱[(5),(7)和(S)]。(+)-7,9-0.0'-(3,3-二聚体(戊二酰基)天芥啶(4)为针头,熔点90-92“C(环己烷)(55mg,61%);R,0.53;[x]6' + 9.6“ (C 2.7, CHCl,);v,,,,(CHC~,) 2 955, 2 923, 1 733, I 415, and 1 258 cm-';6,1.20(6 H、s、17-H 和 18-H3)、1.89(1 H、m、6-H)、2.14 和 2.39(2 H,AB 系统,J 13.3 Hz、12 或 14-H2)、2.18 和 2.29(2 H,AB 系统,J 14.9 Hz、14 或 12-H)、2.34(1 H、m、6-H)、2.59(1 H、ddd、J 12.3、9.7 和 5.5 Hz、 5-H)、3.37(1 H,d,J15.3Hz,3-H)、3.39(1 H,dd,J9.4和7.5Hz,5-H)、3.87(I H. dd、J 15.5 和 1.4 Hz、3-H)、4.00(1 H、m、8-H)、4.44 和 5.05(2 H,AB 系统,J 13.0 Hz、9-H)、4.71(1 H、ddd、J 12.7、8.3 和 8.2 Hz,7-Hz)、 和 5.62 (1 H, s, 2-H);Fc(50 MHz) 29.5 和 30.4 (C-17 和 -IS)、32.9 (C-6)、33.6 (C-13)、44.1 和 44.9 (C-12 和 -14)、54.1 (C-5)、59.8 和 62.4 (C-3 和 -9)、74.2 (C-7)、79.7 (C-8)、125.9 (C-2)、136.5 (C-1) 和 170.9 和 171.7 (C-11 和 I5);miz279(M+, 18%), 137,136,120,119(100), 118, and 117 (发现: M', 279.1469;C,64.65;H,7.8;N,4.5%。C 5H2 NO,需要 M,279.1470;C,64.49;H,7.58;N,5.01“,)。(+)-7,9-0.O'-(3,3-四亚甲基1utaryl)天芥啶(5)作为棱镜得到,熔点94-96“C(环己烷)(56mg,572));R, 0.75: [XI;' + 7.88“ (C 3.3, CHCI,); v,,,,(CHCI,) 2 965, 2 915, 1 745, I 438, and 1 178 cm-'; 6, 1.15-1.82 (8 H, m, 17-, 18-, 19-, and 20-H,), 1.8(t-2.08 (1 H, m, 6-H), 2.30-2.45 (4 H, (C-7), 76.2 (C-8), 124.1 (C-2), 136.3 (C-1), and 171.2 and 171.9 (C-11 and -15); MJZ 305 (M', 5%)、278,277 (loo)、199,185、136、120 和 119(发现:M',305.1631;C,66.65;H,7.7;N,4.85%。C,,H,,NO,需要 M, 305.1627;C,66.86;H,7.59;N,4.59%)。(+)-7,9-0,O'-(3,3-五亚甲基1utaryl)天苷(6)为针头,熔点为101-102“C(环己烷)(49.1mg,41%);R,0.69;[一];'+6.0英寸(c 5.0,CHCl,);v,,,.(CHCI,) 2 934,l 732, 1 454, 1 231, 和 1 158 cm-';6、1.33-1.72(10 H、m、17、18、19、20 和 21 H)、1.80-2.05(2 H、m、6 H)、2.27 和 2.38(2 H,AB 系统,J 15.1 Hz、14 或 12 Hz)、2.30 和 2.43(2 H,AB 系统,J 13.5 Hz、12 或 14 H2)、2.62(1 H、ddd、J 12.5、9.7 和 5.5 Hz、 5-H)、3.40(1 H、d、J 14.5 Hz、3-H)、3.41(1 H、dd、J9.7 和 7.5 Hz、5-H)、3.85(1 H、m、3-H)、4.01(1 H、m、8-H)、4.41 和 5.15(2 H,AB 系统,J 12.9 Hz、9-H)、4.72(1 H、ddd、J 10.8、8.3 和 6.3 Hz,7-Hz)、 和 5.66 (1 H, s, 2-H);6、(50兆赫)21.5和21.6(C-18和-20)、25.8(C-19)、32.2(C-6)、36.4(C-13)、37.0和37.9(C-17和C-21)、41.9和42.4(C-12和-14)、54.2(C-5)、59.8和62.6(C-3和-9)、75.8(C-7)、77.5(C-8)、126.3(C-2)、136.7(C-1)、171。1(C-15)和177.1(C-11);mjz 319 (M+, 673277,149,136,120, and 119 (100) (Found: M+,319.1784;C,67.5;H,7.6;N,4.55%。C,,H,,NO,需要 M, 319.1783;C,67.69;H,7.89;N,4.39%)。(+)-7,9-O,O'-(谷氨酰基)日利三丁烷(7)为不结晶的淡黄色油(20 mg,41%);R,0.51;[ct]6' +3.3“ (C 1.2, CHCI,);v,,,.(CHCI,) 2 980, 2 935, 1735, 1278, 和 1 183 cm-';6、1.12-1.34(2 小时、米、13 小时)、1.43-1.60(1 小时、米、6 小时)、2.00-2.1 1(2 小时、米、12 小时和 14 小时)、2.24-2.64(4 小时、米、5-、6-、12-和 14-小时)、3.41(1 小时、d、J 10.0 赫兹、3 小时)、3.56(1 小时、米、5 小时)、4.05(1 小时、dd、J 10.1 和 1.5 赫兹、 3-H)、4.18(1 H、m、8-H)、4.82 和 4.94(2 H,AB 系统,J 15.0 Hz、9-H2)、5.01(1 H、ddd、J9.7、7.7 和 7.5 Hz,7-H)和 5.53(1 H、s、2-H);6、(50兆赫)、20.9(C-13)、31.9(C-6)、33.6和34.7(C-12和-14)、53.8(C-5)、61.0和61.8(C-3和-9)、75.5和75.6(C-7和-8)、122.1(C-2)、137.1(C-1)和172.6和172.7(C-11和-15);m/z 251 (M+,13%)、136、120、119、93 和 59 (100) (发现:M+,251.1158;C,61.9;H,6.6;N,5.85%。C,,H,,NO,需要 M, 251.1157;C,62.14;H,6.82;N,5.57%)。苦克罗膦酸酯的熔点为192--194°C(发现:C,53.5;H,4.6;N,13.65。C,,H,,N,O,需要 C,53.59;H,4.85;N,13.59%)。7.9-0,0'-[(2R,4S)-二甲基戊二酰]日利三胺(8a)和7,9-0,0'-[(2S,4R)-二甲基戊二酰]天芥啶(8b)作为不可分离的非对映异构体的混合物(1 5.3 mg,40%);R,0。55;v,,,,(CHCl,) 2 963, 2 930, 1 734, 1 456, 1260, 和 1 184 cm-';6、1.09-1.42(6 小时、米、17 小时和 18 小时)、1.46(1/3 小时、米、13 小时)、1.51(2/3 小时、米、13 小时)、1.95-2.63(6 小时、复合、5 小时、12 小时、13 小时、14 小时和 6 小时)、3.30-3.45(2 小时、m、3 小时和 5 小时)、3.86(2/3 小时、米、3 小时)、3.92(1/3 小时、米、3 小时)、4.15(2/3 小时、 m, 8-H), 4.30 (1/3 H, m, 8-H), 4.61 和 4.90 (2/3 H, AB 系统, J 14.0 Hz, 9-H2), 4.73 和 4.90 (4/3 H, AB 系统, J 14.1 Hz, 9-H,), 4.86 (1/3 H, m, 7-H), 5.08 (2/3 H, ddd, J 13.0,8.9, and 6.3 Hz, 7- H), 5.45 (1/3 H, s, 2-H), 和 5.55 (2/3 H, s, 2-H);6、(50 MHz) 17.9、18.2、19.4 和 19.6 (C-17 和 -18)、31.9 和 32.0 (C-6)、38.8 和 39.7 (C-13)、39.2、39.4、39.6 和 39.7 (C-12 和 -14)、53.8 和 53.9 (C-5)、60.5、61.6 和 62.1 (C-3 和 -9)、75.1、75.2、75.5 和 75.8 (C-7 和 -8)、120.6 和 122.9 (C-2)、137.3 和 137.7 (C-l) 和 174.8、175.2、175.6 和 175.7 (C-11 和 -15);m/z 279 (M', llx), 206, 136, 120, 119 (loo) 和 117 (Found: M', 279.1474;C,64.65;H,7.7;N,4.85%。C,,H,,NO, 需要 M: 279.1470;C,64.49;H,7.58;N, 5.01%).m, 12-and 14-H,), 2.48-2.61 (1 H, m, 6-H), 2.85-3.00 (1 H, m, 5-H), 3.42(1 H,d,J15.0Hz,3-H),3.57(1H,m,5-H),4.01(1H, d, J 14.8 Hz, 3-H), 4.08 (1 H, m, 8-H), 4.56 and 5.05 (2 H, AB system,J13.5Hz,9-H2),4.80(1H,ddd,Jl2.9,8.1 和 7.5Hz,7-AcknowledgementsH) 和 5.62 (1 H, s, 2-H);6,(50 MHz) 23.2 和 23.9 (C-18 和 -我们感谢苏格兰大学卡内基信托基金会 19), 31.7 (C-6)。34.2和35.2(C-17和-20)、44.1和44。4 (C-12 奖学金 (D. B.H.) 和 D. S. Rycroft 博士 的 run- 和 -14),45.0 (C-13)、53.9 (C-5)、59.8 和 61.7 (C-3 和 -9),69.1 ning 200 MHz n.m.r. 光谱。参考文献 1 D. J. Robins, Fortschr.自然化学组织, 1982, 41, 11 5.2 D.J.罗宾斯,坚果。Prod. Rep., 1984, 1,235;1985,2, 213;1986,3, 297.3 A. R. Mattocks,“吡咯里西啶生物碱的化学和毒理学”,学术出版社,伦敦,1986年。4 K. Brown, J. A. Devlin, and D. J. Robins, J.Chem. Soc., Perkin Trans.我,1983 年,1819 年。5 E. Vedejs 和 S. D. Larsen, J. Am. Chem. Soc., 1984, 106, 3030.6 K. Narasaka, T. Sakakura, T. Uchimaru, and D. Guedin-Vuong, J. Am. Chem. Soc., 1984,106,2954;H. Niwa, Y. Miyachi, Y. Uosaki, A. Kiroda, H. Ishiwata, and K. Yamada, Tetrahedron Lett., 1986, 27, 4609;J. D. White 和 S. Ohira, J. Org. Chem., 1986, 51, 5494.7 J. Huang 和 J. Meinwald, J. Am. Chem. Soc., 1981, 103, 861.8 J. A. Devlin, D. J. Robins, and S. Sakdarat, J. Chem. Soc., Perkin Trans.我,1982 年,1117 年。J. CHEM. SOC. PERKIN 译.I 1988 9 M. Burton and D. J. Robins, J. Chem. Soc., Perkin Trans.我, 1985, 61 1.10 H. C. Crowley 和 C. C. J. Culvenor, Aust. J. Chem., 1959, 12, 694.11 W. M. Hoskins 和 D. H. G. Crout, J.Chem. Soc., Perkin Trans.我,1977 年,538。12 E. J. Corey 和 K. C. Nicolaou, J. Am. Chem. Soc., 1974,96, 5614.13 H. J. Huizing, F. DeBoer, and T. M. Malingrk, J. Chromatogr., 1980, 195, 407;R. J. Molyneux and J. N. Roitman, 同上, 第142页。14 C. C. J. Culvenor 和 L. W. Smith, Aust. J. Chem., 1967, 20, 2499.1987年5月28日收稿;文件7/940

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号