首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Biosynthesis of the dialkylmaleic anhydride-containing antibiotics, tautomycin and tautomycetin
【24h】

Biosynthesis of the dialkylmaleic anhydride-containing antibiotics, tautomycin and tautomycetin

机译:含二烷基马来酸酐的抗生素、土生霉素和土生霉素的生物合成

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. 1 1995 Biosynthesis of the dialkylmaleic anhydride-containing antibiotics, tautomycin and tautomycetin Makoto Ubukata," Xing-Chun Cheng,b Jun Uzawa and Kiyoshi Isono Biotechnology Research Center, Toyama Prefectural University, Kosugi-machi, Imizu-gun, Toyarna 939-03, Japan The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 35I-01, Japan Department of Marine Science, School of Marine Science and Technology, Tokai University, 3-20-1, Orido, Shimizu, Shizuoka 424, Japan The biosynthetic origins of tautomycin and tautomycetin produced by Streptomyces spirovrrticillatus and Streptomyces griseochromogenus, respectively, have been studied by feeding experiments with 3C labelled precursors. The left half of tautomycin and tautomycetin are synthesized from one propionate and a C-5 unit. The latter is formed from three acetate units with decarboxylation.The labelling pattern from I3C-acetates indicated that a-keto glutarate or an equivalent may be a precursor. The results of a feeding experiment of 1,2-' 3C,glutamate afforded the direct proof for this idea. The right half of tautomycin is biosynthesized by a polyketide pathway which starts with isobutyrate followed by introduction of a glycolate, five acetate and five propionate units. The terminal methyl carbon originates from an acetate-methyl probably formed by decarboxylation of the intermediate terminal P-keto carboxylate anion. The right half of tautomycetin is formed via a polyketide pathway which starts with acetate followed by introduction of three acetate and four propionate units and one butyrate unit.The antifungal antibiotics, tautomycin and tautomycetin were found to be produced by Streptomyces spiroverticillutus and Stwptomyces griseochromogenus, respectively. Both antibiotics have similar structures and biological activities. These two antibiotics have not only a unique 2-(l-hydroxy-2- carboxyethyl)-3-methylmaleicanhydride struct~re,~,~ but also have unique biological activity. On further investigation, it was found that tautomycin and tautomycetin induced blebs on the cell surface of human leukemia cell K562.' More recently it was found that tautomycin inhibits protein phosphatase activity in a cell-free system,6 -* and competes with the specific binding of C3Hlabe1led okadaic acid to a particulate fraction prepared from mouse skin.Because of the increasing importance of tautomycin as a strong specific inhibitor of protein phosphatases 1 and 2A, its stereochemistry was elucidated,' and a total synthesis of tautomycin has been recently completed." This paper deals with the biosynthesis of these unique polyketide antibiotics, tautomycin and tautomycetin (Fig. I). Results and discussion Biosynthesis of tautomycin In the feeding experiments for a tautomycin-producing strain, Streptoniyces spiroverticillutus sp. JC-84-44, sodium 1-'"1-acetate, sodium 2-' 3Cacetate, sodium 1,2- "C,acetate, sodium 1-' 3Cpropionate, sodium 2-13Cpropionate, so-dium 3-13Cpropionate, L-methyl-13Cmethionine,sodium 1-' 3Cisobutyrate, 1,2-' 3C,glycine and sodium 1,2-'3C,glutamate were used as '3C-labelled precursors for tautomycin.The detailed '3C enrichment data of tautomycin are listed in Table 1. Feeding experiments of sodium 1-'3Cacetate showed that C-4, C-8, C-10, C-16, C-20, C-1' and C-7' were derived from sodium l-13Cacetate. 13C Enrichments were observed at C-1, (2-2, C-3, C-5, C-6, C-7, C-9, C-11, C-12, C-13, C-14, C-15, C-17, C-18, C-19, C-21, C-2', C- 3', C-4', C-5', C-6', 3-Me, 7-Me, 13-Me, 15-Me, 19-Me, 25-Me and 5'-Me as a result of the feeding experiment with sodium 2-13Cacetate. Relatively high enrichment ratios at C-I, C-5, C-9, C-11, C-17, C-21, C-2' and C-4' among them were observed as shown in Table 1.These results are consistent with the results of the feeding experiment of sodium l-' 3Cacetate and indicated that seven acetate units were incorporated into tautomycin. The lower enrichment values at C-2, C-3, C-6, C-7, C-12, C-13, C-14, C-15, C-18, C-19, C-5', C-6', 3-Me, 7-Me, 13- Me, 15-Me, 19-Me and 5'-Me indicated randomization of sodium 2-' 3Cacetate to 1,2,3- "CJpropionate presumably by multiple passages through the Krebs cycle followed by conversion of succinate into propionate by methylmalonyl Co-A mutase as already observed in cationomycin '' and cytovaricin biosynthesis. ' In the feeding experiments using 13C propionate, C-2, C-6, C-12, C-14, C-18 and C-6' were derived from sodium l -l 3Cpropionate and 3-Me, 7-Me, 13-Me, 15-Me, 19-Me and 5'-Me were derived from sodium 3-13Cpropionate as shown in Table 1.These results indicated that six propionate units were incorporated into tautomycin. Additional evidence for the incorporation of 3C propionate was obtained in the feeding experiment using sodium 2-' 3Cpropionate. which showed 13C enrichment at C-3, C-7, C-13, C-15, C-19 and C-5'. The feeding experiment using sodium I1-l 'Clisobutyrate showed that only C-24 was derived from C-l of isobutyrate. In the feeding experiment using ~-methyl-'~Cmethionine,high enrichment was observed at the methoxy methyl at C-23. In the 2-D INADEQUATE13 spectrum of tautomycin labelled with sodium 1,2-' 3C,acetate, the pattern of carbon- carbon correlation observed by cross peaks between the coupled carbons due to the randomization of sodium 1,2-' 3C,acetate revealed most of carbon connectivities of tautomycin. Although no enrichment could be detected on C-22 and C-23 in the 1D 13C NMR of tautomycin labelled with sodium l -'3Cacetate, sodium C2-l 3Cacetate or sodium 1,2-"C2acetate, the rather weak cross peaks of C-22 (66.4 ppm) and C-23 (80.6 ppm) were observed in the 2-D INADEQUATE spectrum of tautomycin labelled with sodium I ,2-'3C,acetate.3 The low incorporation of sodium 1,2-' 3C2acetate may indicate that acetate was metabolized to isocitrate which was converted into glyoxylate, followed by conversion into glycolate, namely hydroxyacetyl-Co A, then introduced into C-22 and C-23.In the leucomycin biosynthetic J. CHEM. SOC. PERKIN TRANS. 1 1995 0 Tau tomyan OH 0 Me OH 0 OH Me 2'6 Tautomycetin Fig. 1 Structures of tautomycin and tautomycetin Table 1 13C Chemical shifts and isotopic incorporation into tautomycin Relative enrichment ~ ~~~ Carbon 1-13C-2-13C-L-M~-'~C-I-"C-c2-139-3-13C -No. S( "C) Acetate Acetate Methionine Propionate Propionate Propionate 1 28.0 -3.5 2 213.0 -1.9 3 47.4 -1.6 4 29.1 3.6 -5 30.7 -3.7 6 74.3 -1.8 7 34.9 -2.0 8 28.1 3.0 -9 36.1 -3.9 -10 95.4 3.5 11 30.2 -3.9 12 26.7 -2.4 13 27.6 -2.7 14 74.8 -1.9 15 34.8 2.6 16 27.4 3.3 17 31.4 -3.3 18 74.3 -1.8 19 52.4 -1.6 20 215.0 4.4 -21 45.8 -4.4 22 66.4 23 80.6 24 76.5 --25 28.7 26 19.4 -1.53 -1' 196.6 5.7 2' 40.9 -6.3 3' 64.0 2.7 4' 142.1 -3.2 5' 142.9 -I .8 6' 165.8 -2.3 -7' 164.8 2.7 3-Me 16.2 -2.5 7-Me 17.9 -2.1 13-Me 10.9 -1.9 15-Me 16.7 -2.1 19-Me 13.7 -1.9 25-Me 17.8 -2.1 5'-Me 10.2 -2.6 23-OMe 59.I a Relative enrichments were normalized to peak intensities for the 23-OMe signal.Enrichment ratio of the peak of tautomycin enriched by l-13Cisobutyrate was 5.2. 'Relative enrichment of 23-OMe was normalized to peak intensity for the C-20 signal. study, Omura et al. also observed that sodium l-13Cacetate glycolate pathway." To test this possibility, a feeding and 2-'3Cacetate were not incorporated into a C, unit experiment with l ,2-'3C2glycine which gives glyoxylate by corresponding to C-3 and -4 to which a hydroxyl and a methoxy transamination was performed.This I3C double labelled unit group are attatched, re~pectively.'~ They postulated that the C2 was highly incorporated into C-22 and C-23 (Jcc = 42.4 Hz) of unit of leucomycin are derived from glycerol via glycine-tautomycin. This result indicated that glycine was incorporated J. CHEM. SOC. PERKIN TRANS. I 1995 200 153 '00 50 ~ ~ I i I I Fig. 2 PFG 2-D INADEQUATE spectrum of tautomycin labelled with 1,2-'3C,glycine. JEOL 01-400FT NMR spectrometer, 35 mg 140 mm-3 using micro NMR tube, T = 5.8 ms, measurement time; 16 h. into C-22 and C-23 via the glyoxylate-glycolate pathway. The '3C-13C labelling pattern detected by the pulsed field gradient (PFG) 2-D INADEQUATE l6 technique using a micro NMR tube is shown in Fig.2. 1,2-13C2Glycine was also incorporated into six acetate units, C-4 and C-5, C-8 and C-9, C- 10 and C-1 1, C-16 and C- 17, C-20 and C-2 1, C-1 ' and C-2', probably through the glycine reductase pathway. However, the possibility of indirect incorporation of glycine via the glycine reductase pathway through acetate into C-22 and C-23 could be ruled out, because the higher enrichment at C-22 and C-23 were observed even in 1D 13C NMR. The low level incorporation into 2,3-13C,propionate units, C-3 and 3-Me, C-7 and 7-Me, C-13 and 13-Me, C-15 and 15-Me, C-19 and 19-Me, are reasonably explained by second cycle passage of acetate through the Krebs cycle followed by the methyl malonate- propionate shunt via succinate.'' On the basis of the above data, we conclude that the right half chain of the tautomycin molecule is synthesized by a polyketide pathway which starts with isobutyrate followed by introduction of a glycolate unit, and then five acetate and five propionate units. The terminal methyl carbon (C-I) was derived from 2-' 3Cacetate which may be metabolized to P-keto carboxylic acid, after which the terminal methyl ketone is formed by decarboxylation. The left half of the antibiotic, the dialkylmaleic anhydride moiety is synthesized from one propionate and a C-5 unit. Although the biosynthesis of 2-butyl-3-methylmaleic anhydride from the condensation of a hexanoyl derivative with oxalacetic acid has been reported,' there is no biosynthetic precedent for the 24 1-hydroxy-2-carboxyethyl)-3-methylmaleicanhydride path.As we have described above, C-1' and -7' were derived from sodium 1-13Cacetate and carbons 2', 3' and 4' were derived from sodium 2-l3C)acetate. It is to be noted that the enrichment ratios at C-1' and -2' derived from sodium 1-"Clacetate and 2-13Cacetate are twice as high as those at C-7' and C-4'. This labelling pattern suggests strongly that the C-5 unit may come from a-keto glutarate which is formed from acetate through Krebs cycle (Fig. 4).The clear evidence of this hypothesis was finally obtained from the feeding experiment of 2401 165 '60 155 1so 145 t' I 7' C-4' Fig.3 PFG 2-D INADEQUATE spectrum of tautomycin labelled with L- I ,2-' 3C,glutamate. JEOL a-400 FT NMR spectrometer, 29 mg 140 mm-3 using micro NMR tube, T = 5.8 ms, measurement time; 22 h. L- 1,2-' 3C2glutamate which is a direct precursor of a-1,2-13C2keto glutarate (transamination). Only C-4' and C-7' (.Icc 61.5 Hz) in tautomycin were enriched with ~-1,2-'~C~- glutamate. The PFG 2-D INADEQUATE spectrum of tautomycin labelled with L- 1,2-l 3C2glutamate are shown in Fig. 3. This result directly evidenced that the C-5 unit was derived from a-keto glutarate. The dialkylmaleic anhydride moiety may be biosynthesized via an aldol type condensation of the ketone of x-keto glutarate with the active methylene of propionyl CoA, followed by dehydration and then hydration of the resulting allylic position at C-3'.Thus, the biosynthesis of tautomycin is depicted in Fig. 4.It is noteworthy that this experiment affords the first clear evidence of the biosynthesis of a C-5 unit which has been deduced from the distribution of label from '3C acetate for the biosynthesis of domoic acid * and others.' Biosynthesis of tautomycetin Feeding experiments with sodium l-13Cacetate showed that carbons 4, 10, 14, 18, 1' and 7' were derived from sodium I -l 3Cacetate. Feeding experiments of sodium 2-' 3Cacetate showed that carbons 1,5,6,7,8,9, 11, 15, 19,2', 3', 4', 5', 7-Me, 9-Me, 13-Me, 17-Me and 5'-Me were enriched. These results indicated randomization of 2-'3Cacetate to I ,2,3-' 3C3- propionate as already observed and discussed with tautomycin.In the experiments using 13C propionate, carbon 6, 8, 12, 16 and 6' were derived from sodium l-'3Cpropionate and carbons 7-Me, 9-Me, 13-Me, 17-Me and 5'-Me were derived from sodium 3-' 3Cpropionate. These results indicated that five propionate units were incorporated into tautomycetin. In the case of sodium 2-' 3Cpropionate, '3C enrichment at carbons 7,9, 13, 17 and 5' were observed. The experiment using sodium l-13Cbutyrate showed that only the carbon 2 was derived from C-1 of butyrate (Table 2). The 13C NMR and Echo-type 2D INADEQUATE 13*20 spectra of tautomycetin labelled with 1,2-' 3C2acetate are shown in Fig. 5. Five pairs of cross peaks observed between C-4 and C-5 (Jcc 53.8 Hz), C-10 and C-I1 (Jcc 29.4 Hz), C-14 and 2402 J.CHEM. SOC. PERKIN TRANS. I 1995 isocitrna 'COOH COSCoAI -glycincpropime . OH 0 OH 0 0 mcthimint mthyl # Biosynthesis of tautomycin. 0:derived from C-2 methyl carbon of 2-13Cacetate. 13C Enrichment ratios at C-1' and C-2' are higher than Fig. 4 those at C-4'and C-7'. Fig. 5 Echo-type 2D INADEQUATE spectrum of tautomycetin labelled with 1,2-' 'CJacetate. JEOL GX-400 FT NMR spectrometer, t = 5 ms, measurement time; 37 h. C-15(Jcc39.2Hz),C-18and 18-Me(Jcc41.9Hz)andC-1' and C-2' (Jcc 57.4 Hz) confirmed the five acetate units. No radomization occurred and cross peaks between C-4' and C-7' could not be detected in this case.On the basis of the above data, the biosynthetic origin of tautomycetin can be summarized as follows. The right half chain of the tautomycetin molecule is formed via the polyketide pathway which starts with acetate followed by introduction of three acetate and four propionate units and one butyrate unit. The terminal methyl carbon (C-1) was derived from 2-13Cacetate. The data suggests that the terminal methylene are formed by decarboxylation of the corresponding P-keto carboxylate or P-hydroxy carboxylate anion. The left half dialkylmaleic anhydride moiety has the same structure as that of tautomycin and gave a similar enrichment pattern. As described above, C-1' and -7' were derived from l -l 3Cacetate and C-2', -3' and -4' were derived from 2-13Cacetate.This labelling pattern suggested that the anhydride moiety was formed by condensation of one molecule of propionate with the C-5 unit derived from m-keto glutarate as in the case of tautomycin (Fig. 6). Since the absolute configuration of the dialkylmaleic anhydride moiety of tautomycetin is identical with that of tautomycin,? both the moieties may be biosynthesized by similar enzyme systems. t CD curve of the trimethyl ester derived from the dialkylmaleic anhydride moiety of tautomycin was identical with that of tautomycetin. J. CHEM. SOC. PERKIN TRANS. 1 1995 2403 Table 2 3C Chemical shifts and isotopic incorporation into tautomycetin Relative enrichment a Carbon 1-'3C- 2-'3C- 1-'3C- I-'"- 2- 3C - 3-'3C- No.6( 3C) Acetate Acetate Butyrate Propionate Propionate Propionate 1 120.0 1.6 3 I 139.0 - 3 156.0 ~~ 4 126.0 - 5 201.o 1.9 6 52.8 1.8 7 27.1 1.4 8 44.9 1.4 9 29.8 1.5 10 32.5 - 11 31.7 1.6 12 73.6 I .6 13 52.5 1.8 14 215.0 - 15 46.6 1.4 16 66.0 - 17 42.8 1.3 18 73.4 - 19 18.4 1.4 1' 170.0 - 3' 40.6 1.3 3' 63.0 1.3 4' 142.2 1.7 5' 142.9 1.5 6' 165.7 - 7' 164.8 - 7-Me 20.0 1.4 9-Me 19.2 1.5 13-Me 28.7 1.4 17-Me 10.3 2.0 5'-Me 10.2 2.0 1 " 2" 20.5 13.9 -- ~ ~~ ~ Relative enrichments were normalized to peak intensities for the C-2" signal. Experimental 3C NM R spectra were measured on a JEOL FX-100FT NMR spectrometer.2D INADEQUATE spectra were recorded on JEOL GX-400 FT NMR. Pulsed field gradient (PFG) 2D- INADEQUATE spectra were recorded on a JEOL CX-400 FT NMR spectrometer with a PFG unit. Micro NMR tubes were made by Shigemi Ltd, Japan. The 13C labelled acetate and propionate (90 atom) were purchased from MSD ISOTOPES, Canada. 1-'3CButyrate (99 atom) was purchased from ICON, U.S.A. ~-rnethyl-'3CMethionine (98.2 atom) was purchased from MSD ISOTOPES, Canada. I ,2-13C,Glycine (99 atom) was purchased from ISOTEC, U.S.A. L-1,2-' 3C,Glutamic acid (99 atom) was purchased from EURISO-TOP, France. Culture of the '3C-labelled tautomycin-producing strain Streptomyces spiroverticillatus sp.JC-84-44 grown on starch- yeast agar was inoculated into a 400 cm3 cylindrical flask containing 70 cm3 of a medium composed of glucose 2, soluble starch 1, meat extract O.l, dry yeast 0.4, soybean flour 2.5, NaClO.25 and K,HPO, 0.005, and cultured at 28 "C for 48 h on a rotary shaker. Aliquots (0.5cm3) of the seed culture was inoculated into the same medium. Fermentation was carried out on a rotary shaker at 28 "C. After 24 h of fermentation, a '3C-labelled precursor was added to the culture at a concentration of 0.6 (w/v), and fermentation was continued for an additional 48 h. In the cases of 1,2-'3C,glycine and L-sodium 1,2-' 3C2glutamate prepared from L- 1,2-'3C2glutamic acid neutralized with 0.1 mol dm-13 aq. NaOH, precursors were added in doses of 0.007 (w/v) at 24, 30, 36 and 46 h after inoculation, and the cultures were further incubated for 24 h.Isolation of 13C-labelledtautomycin Each fermentation broth (490 cm3; pH 7.2; 350 cm3 in the cases of 1,2-13C,glycine and L-sodium 1,2-13C,glutamate) was filtered; the filtrate was extracted with EtOAc and the mycelium cake was extracted with acetone. The acetone extract was concentrated under reduced pressure to give an aqueous solution, which was then extracted with EtOAc. Both the EtOAc extracts were combined and evaporated to dryness under reduced pressure. The residue was chromatographed on a silica gel column with CHC1,-MeOH (4: 1). The eluate was monitored with silica gel TLC, and then further purified by reverse phase HPLC Senshu pak ODS-H column with MeOH- H,O-buffer (1 diethylamine-formic acid, pH 7.3), 8 :1 : 1 as a solvent system. The fraction were adjusted to pH 4 with 1 mol dm-3 HCl and concentrated to give an aqueous solution, which was then extracted with EtOAc and evaporated under reduced pressure to give pure tautomycin.From each 490 cm3 of the culture broth supplemented with 3C-labelled precursors, 20- 45 mg of purified l3C-labe1led tautomycin was obtained. The yields of 1 ,2-'3C,glycine labelled and L-I ,2-'3C2glutamate labelled tautomycins were 35.7 mg and 29.9 mg, respectively. Culture of I3Clabelled tautomycetin-producing strain and isolation of I3Clabelled tautomycetin For preparation of labelled tautomycetin, Streptomyces griseochrornogenus sp.JC-84-1223 was used. The cultural J. CHEM. SOC. PERKIN TRANS. 1 1995 bsol;COOHr ICOSCoA pmpionna DOH OH 0 OH 0 0 O0 k 0 Fig. 6 Biosynthesis of tautomycetin. a:derived from C-2 methyl carbon of 2-' Tlacetate. conditions and isolation procedure were the same as those for 3C labelled tautomycin, except that the volume of the fermentation broth of tautomycetin was increased to 980 cm3 and that MeOH-buffer for HPLC was adjusted to pH 4.0. Acknowledgements This work was supported by a Grant-in-Aid for Scientific Reserch from the Ministry of Education, Science and Culture of Japan. References 1 X.-C. Cheng, T. Kihara, H. Kusakabe, J. Magae, Y. Kobayashi, R.-P. Fang, Z.-F.Ni, Y.-C. Sheng, K. KO, I. Yamaguchi and K. Isono, J. Anfibiot., 1987,40, 907. 2 X.-C. Cheng, T. Kihara, X. Ying, M. Uramoto, H. Osada, H. Kusakabe, B. N. Wang, Y. Kobayashi, K. KO, I. Yamaguchi, Y.-C. Sheng and K. Isono, J. Antihiot., 1989,42, 141. 3 (a)M. Ubukata, X.-C. Cheng and K. Isono, J. Chem. Soc., Chern. Commun., 1990, 244; (h)X.-C. Cheng, M. Ubukata and K. Isono, J. Antibiot., I990,43, 809. 4 X.-C. Cheng, M. Ubukata and K. Isono, J. Antibiot., 1990,43, 890. 5 H. Osada, J. Magae, C. Watanabe and K. Jsono, J. Antibiot., 1988,41,925. 6 J. Magae, H. Osada, H. Fujiki, T. C. Saido, K. Suzuki, K. Nagai and K. Isono, Proc. Jpn. Acad., Ser. B., 1990,66, 209. 7 C. MacKintosh and S. Klumpp, FEBS Lett., 1991, 285,245. 8 M. Hori, J. Magae, Y.-G.Han, D. J. Hartshone and H. Karaki, FEBS Lett., 1991, 285, 245. 9 M. Ubukata, X.-C. Cheng, M. Isobe and K. Isono, J. Chem. Soc., Perkin Trans. I, 1993, 617. 10 H. Oikawa, M. Oikawa, T. Ueno and A. Ichihara, Tetrahedron Lett., 1994,35,4809. 11 M. Ubukata, J. Uzawa and K. Isono, J. Am. Chem. Soc., 1984,106, 2213. 12 T. Kihara, M. Ubukata, J. Uzawa and K. Isono, J. Antibiot., 1989, 42, 919. 13 A. Bax, R. Freeman, T. A. Frenkiel and M. H. Levitt, J. Magn. Recon., 1981,43,478. 14 S. Omura, A. Nakagawa, H. Takeshima, K. Atusmi, J. Miyazaw, F. Piriou and G. Lukacs, J. Am. Chem. Soc., 1975,97,6600. 15 S. Omura, K. Tsuzuki, A. Nakagawa and G. Lukacs, J. Antibiot., 1983,36, 61 1. 16 Field gradient 2-D INADEQUATE techique for detection of natural abundance "C 13C coupling will be reported elsewhere. 17 (a) C. E. Moppett and J. K. Sutherland, J. Chem. Soc., Chem. Commun., 1966, 772; (h) J. L. Bloomer, C. E. Moppett and 3. K. Sutherland, J. Chem. Soc., Chem Commun., 1965,619. 18 D. J. Douglas, U. P. Ramsey, J. A. Walter and J. L. C. Wright, J. Chem. Soc., Chrm. Commun., I 992, 714. 19 T. Hemscheidt and E. D. Spenser, J. Am. Chem. Soc., 1993,115,3020. 20 D. L. Turner, J. Mugn. Reson., 1982,49, 175. Paper 5/03359D Received 25th May 1995 Accepted 6th June 1995
机译:J. CHEM. SOC. PERKIN TRANS. 1 1995 Biosynthesis of the diakylmaleic anhydride-containing 抗生素,tautomycin and tautomycetin Makoto Ubukata,“Xing-Chun Cheng,b Jun Uzawa and Kiyoshi Isono Biotechnology Research Center, Toyama Prefectural University, Kosugi-machi, Imizu-gun, Toyarna 939-03, Japan 日本埼玉县和光市理化研究所 35I-01, 日本 海洋科学与技术学院海洋科学系, Tokai University, 3-20-1, Orido, Shimizu, Shizuoka 424, Japan 通过3C标记前体的喂养实验,研究了由螺旋链霉菌和灰染色链霉菌分别产生的互变异霉素和互变异霉素的生物合成来源。自塑霉素和自交霉素的左半部分由一个丙酸盐和一个 C-5 单元合成。后者由三个脱羧的醋酸盐单元形成。I3C-乙酸盐的标记模式表明,a-酮戊二酸或等效物可能是前体。[1,2-' 3C,]谷氨酸的喂养实验结果为这一想法提供了直接证据。右半部的吐出霉素通过聚酮途径生物合成,该途径从异丁酸开始,然后引入乙醇酸酯、五个乙酸盐和五个丙酸酯单元。末端甲基碳起源于乙酸甲酯-甲基,可能是由中间末端 P-酮羧酸阴离子脱羧形成的。互交霉素的右半部分通过聚酮途径形成,该途径从乙酸盐开始,然后引入三个乙酸盐和四个丙酸盐单元以及一个丁酸盐单元。抗真菌抗生素、互变异霉素和互变异霉素分别由螺旋藻链霉菌和灰染色链霉菌产生。两种抗生素具有相似的结构和生物活性。这两种抗生素不仅具有独特的2-(l-羟基-2-羧乙基)-3-甲基马来二氢盐结构~re,~,~,而且具有独特的生物活性。经过进一步研究,发现自交霉素和自塑霉素诱导了人白血病细胞K562细胞表面的水泡。最近发现,互变异霉素抑制无细胞系统中的蛋白磷酸酶活性,6 -*,并与C3H]labe1led冈田酸与从小鼠皮肤制备的颗粒部分的特异性结合竞争。由于互变异霉素作为蛋白磷酸酶1和2A的强特异性抑制剂的重要性日益增加,其立体化学得到了阐明,“最近完成了互变异霉素的全合成。本文涉及这些独特的聚酮类抗生素、互交霉素和互交霉素的生物合成(图I)。结果与讨论 在产生吐出霉素的菌株的喂养实验中,链霉菌 spiroverticillutus sp.JC-84-44,[1-'“1-乙酸钠、[2-'3C]乙酸钠、[1,2-”C,]乙酸钠、[1-'3C]丙酸钠、[2-13C]丙酸钠、[3-13C]丙酸钠、L-[甲基-13C]蛋氨酸、[1-' 3C]异丁酸钠、[1,2-' 3C,]甘氨酸和[1,2-'3C,]谷氨酸钠用作'3C标记的互变异霉素前体。表1列出了牛骨霉素的详细'3C富集数据。[1-'3C]乙酸钠的饲喂实验表明,C-4、C-8、C-10、C-16、C-20、C-1'和C-7'来源于[l-13C]乙酸钠。在C-1、(2-2、C-3、C-5、C-6、C-7、C-9、C-11、C-12、C-13、C-14、C-15、C-17、C-18、C-19、C-21、C-2'、C-3'、C-4'、C-5'、C-6'、3-Me、7-Me、13-Me、15-Me、19-Me、25-Me和5'-Me)上观察到13C富集。如表1所示,C-I、C-5、C-9、C-11、C-17、C-21、C-2'和C-4'的富集率相对较高,与[l-' 3C]乙酸钠的饲喂实验结果一致,表明在吐出霉素中掺入了7个乙酸盐单元。C-2、C-3、C-6、C-7、C-12、C-13、C-14、C-15、C-18、C-19、C-5'、C-6'、3-Me、7-Me、13-Me、15-Me、19-Me和5'-Me的较低富集值表明,[2-' 3C]乙酸钠随机化为[1,2,3-“CJ丙酸酯,大概是通过克雷布斯循环的多次传代,然后通过甲基丙二酰辅酶A变位酶将琥珀酸转化为丙酸盐,如在阳离子霉素''和胞矢曲张素生物合成中已经观察到的那样。在使用13C丙酸酯的喂养实验中,C-2、C-6、C-12、C-14、C-18和C-6'来源于[l-l 3C]丙酸钠,3-Me、7-Me、13-Me、15-Me、19-Me和5'-Me来源于[3-13C]丙酸钠,如表1所示。在使用 [2-' 3C]丙酸钠的喂养实验中获得了掺入 3C 丙酸盐的额外证据。在C-3、C-7、C-13、C-15、C-19和C-5'处显示出13C富集。使用[I1-l'氯异丁酸钠的喂养实验表明,只有C-24来源于异丁酸的C-l。在~-[甲基-'~C]蛋氨酸的喂养实验中,甲氧基甲基在C-23处高富集。在用[1,2-' 3C,]乙酸钠标记的互变异霉素的二维INADEQUATE13谱图中,由于[1,2-' 3C,]乙酸钠的随机化,偶联碳之间的交叉峰观察到的碳-碳相关性模式揭示了自旋霉素的大部分碳连接。虽然在用[l-'3C]乙酸钠、C2-l 3C]乙酸钠或[1,2-“C2]乙酸钠标记的托托霉素的1D 13C NMR中,在C-22和C-23上没有检测到富集,但在用钠标记的互变异霉素的2-D不充分光谱中观察到C-22(66.4 ppm)和C-23(80.6 ppm)相当弱的交叉峰 [I ,2-'3C,]乙酸酯.3 [1,2-' 3C2]乙酸钠的低掺入可能表明乙酸盐被代谢为异柠檬酸盐,异柠檬酸盐转化为乙醛酸,然后转化为乙醇酸酯,即羟基乙酰辅酶A,然后引入C-22和 C-23.In 白霉素生物合成的J. CHEM. SOC. PERKIN TRANS. 1 1995 0 Tau tomyan OH 0 Me OH 0 OH Me 2'6 互交霉素 图1 互变异霉素和互交霉素的结构 表1 13C 化学位移和同位素掺入进入吐出霉素 相对富集~~~~ 碳 [1-13C]-[2-13C]-L-[M~-'~C]-[I-“C]-c2-139-[3-13C] -No. S( ”C) 乙酸盐 乙酸盐 蛋氨酸 丙酸酯 1 28.0 -3.5 2 213.0 -1.9 3 47.4 -1.6 4 29.1 3.6 -5 30.7 -3.7 6 74.3 -1.8 7 34.9 -2.0 8 28.1 3.0 -9 36.1 -3.9 -10 95.4 3.5 11 30.2 -3.9 12 26.7 -2.4 13 27.6 -2.7 14 74.8 -1.9 15 34.8 2.6 16 27.4 3.3 17 31.4 -3.3 1874.3 -1.8 19 52.4 -1.6 20 215.0 4.4 -21 45.8 -4.4 22 66.4 23 80.6 24 76.5 --25 28.7 26 19.4 -1.53 -1' 196.6 5.7 2' 40.9 -6.3 3' 64.0 2.7 4' 142.1 -3.2 5' 142.9 -I .8 6' 165.8 -2.3 -7' 164.8 2.7 3-Me 16.2 -2.5 7-Me 17.9 -2.1 13-Me 10.9 -1.9 15-Me 16.7 -2.1 19-Me 13.7 -1.9 25-Me 17.8 -2.1 5'-Me 10.2 -2.6 23-OMe 59.I a 将相对富集归一化为 23-OMe 信号的峰值强度。富含[l-13C]异丁酸酯的自塑霉素峰富集率为5.2。'23-OMe的相对富集被归一化为C-20信号的峰值强度。研究,Omura等人也观察到[l-13C]乙酸钠乙醇酸钠的途径。为了测试这种可能性,没有将喂料和[2-'3C]乙酸盐掺入C,用[l,2-'3C2]甘氨酸进行单元实验,该甘氨酸通过对应于C-3和-4而产生乙醛酸,羟基和甲氧基转氨反应。这个 I3C 双标记单元组是附加的,re~pectively。~ 他们假设 C2 高度掺入 C-22 和 C-23 (Jcc = 42.4 Hz) 的白霉素单位是通过甘氨酸-互变异霉素从甘油中提取的。该结果表明甘氨酸掺入了J. CHEM. SOC. PERKIN TRANS.I 1995 200 153 '00 50 ~ ~ I i I 图 2 PFG 2-D 用[1,2-'3C,]甘氨酸标记的互变异霉素谱不足。JEOL 01-400FT 核磁共振波谱仪,35 mg 140 mm-3 使用微核磁共振管,T = 5.8 ms,测量时间;16 小时通过乙醛酸-乙醇酸途径进入 C-22 和 C-23。使用微核磁共振管的脉冲场梯度 (PFG) 2-D 不足 l6 技术检测到的 '3C-13C 标记模式如图 2 所示。[1,2-13C2]甘氨酸还掺入六个乙酸盐单元中,C-4和C-5,C-8和C-9,C-10和C-1 1,C-16和C-17,C-20和C-2 1,C-1'和C-2',可能是通过甘氨酸还原酶途径。然而,可以排除甘氨酸通过乙酸盐通过甘氨酸还原酶途径间接掺入 C-22 和 C-23 的可能性,因为即使在 1D 13C NMR 中也观察到 C-22 和 C-23 的更高富集。低水平掺入[2,3-13C,]丙酸盐单元,C-3和3-Me,C-7和7-Me,C-13和13-Me,C-15和15-Me,C-19和19-Me,可以合理地解释为乙酸盐通过克雷布斯循环的第二循环通过,然后丙二酸甲酯 - 丙酸甲酯通过琥珀酸分流。根据上述数据,我们得出结论,氨变异霉素分子的右半链是通过聚酮途径合成的,该途径从异丁酸开始,然后引入乙醇酸单元,然后是五个乙酸盐单元和五个丙酸单元。末端甲基碳(C-I)来源于[2-' 3C]乙酸酯,可代谢为对酮羧酸,然后通过脱羧形成末端甲基酮。抗生素的左半部分,二烷基马来酸酐部分由一个丙酸盐和一个C-5单元合成。虽然已经报道了己酰衍生物与草乙酸缩合而生物合成的2-丁基-3-甲基马来酸酐,但24,1-羟基-2-羧乙基)-3-甲基马来酸酐路径没有生物合成先例。如上所述,C-1'和-7'来源于[1-13C]乙酸钠,碳2'、3'和4'来源于[2-l3C]乙酸钠。需要注意的是,来自[1-“乙酸钠和[2-13C]乙酸钠的C-1'和-2'的富集比是C-7'和C-4'的两倍。这种标记模式强烈表明 C-5 单元可能来自 a-酮戊二酸,它是由乙酸盐通过克雷布斯循环形成的(图 4)。2401 165 '60 155 1so 145 t' I 7' C-4' 的喂养实验最终获得了这一假说的明确证据 图3 PFG 2-D L-[ I ,2-' 3C,]谷氨酸标记的吐出霉素谱不足。JEOL A-400 FT NMR 波谱仪,29 mg 140 mm-3,使用微型 NMR 管,T = 5.8 ms,测量时间;22小时。L-[ 1,2-' 3C2]谷氨酸,它是 a-[1,2-13C2]酮戊二酸(转氨作用)的直接前体。只有 C-4' 和 C-7' (.Icc 61.5 Hz)在吐出霉素中富集了~-[1,2-'~C~]-谷氨酸。用L-[1,2-l 3C2]谷氨酸标记的互变异霉素的PFG 2-D不充分谱图如图3所示。这一结果直接证明了C-5单元来源于a-酮戊二酸。二烷基马来酸酐部分可以通过x-酮戊二酸酮的酮与丙酰辅酶A的活性亚甲基的醛醇型缩合进行生物合成,然后脱水,然后在C-3'处的水合所得烯丙基位置。因此,图 4.It 描述了互变异霉素的生物合成,值得注意的是,该实验提供了C-5单元生物合成的第一个明确证据,该证据是从“用于软骨藻酸*和其他生物合成的3C乙酸盐”标记的分布中推断出来的。互交霉素的生物合成 用[l-13C]乙酸钠喂养实验表明,碳4、10、14、18、1'和7'来源于[I -l 3C]乙酸钠。[2-' 3C]乙酸钠的进料实验表明,碳1、5、6、7、8、9、11、15、19、2'、3'、4'、5'、7-Me、9-Me、13-Me、17-Me和5'-Me被富集。这些结果表明,[2-'3C]乙酸酯随机化为[I,2,3-'3C3]-丙酸酯,正如已经观察到的那样,并与吐霉素进行了讨论。在使用13C丙酸酯的实验中,碳6、8、12、16和6'来源于[l-'3C]丙酸钠,碳7-Me、9-Me、13-Me、17-Me和5'-Me来源于[3-'3C]丙酸钠。这些结果表明,5个丙酸盐单元被掺入到互变异霉素中。在[2-'3C]丙酸钠的情况下,观察到“碳7,9,13,17和5处的3C富集”。使用[l-13C]丁酸钠的实验表明,只有碳2来自丁酸盐的C-1(表2)。[1,2-' 3C2]乙酸酯标记的互变异霉素的13C NMR和Echo型2D INSUFFICIENT 13*20谱图如图5所示。在 C-4 和 C-5 (Jcc 53.8 Hz)、C-10 和 C-I1 (Jcc 29.4 Hz)、C-14 和 2402 J.CHEM. SOC. PERKIN TRANS 之间观察到 5 对交叉峰。I 1995 isocitrna 'COOH COSCoAI -glycincpropime .OH 0 OH 0 0 mcthimint mthyl # 氨变异霉素的生物合成。0:来源于[2-13C]乙酸酯的C-2甲基碳。C-1'和C-2'处的13C富集比高于图4C-4'和C-7'处的富集比。图5 用[1,2-'CJacetate标记的互变异霉素的回声型2D谱图不足。JEOL GX-400 FT 核磁共振波谱仪,t = 5 ms,测量时间;37 h. C-15(Jcc39.2Hz)、C-18和18-Me(Jcc41.9Hz)以及C-1'和C-2'(Jcc 57.4 Hz)证实了5个醋酸酯单元。在这种情况下,没有发生阴道化,并且无法检测到C-4'和C-7'之间的交叉峰。基于以上数据,互交霉素的生物合成来源可归纳如下。互变异霉素分子的右半链通过聚酮途径形成,该途径从乙酸盐开始,然后引入三个乙酸盐和四个丙酸盐单元以及一个丁酸盐单元。末端甲基碳(C-1)来源于[2-13C]乙酸酯。数据表明,末端亚甲基是由相应的P-酮羧酸酯或对羟基羧酸阴离子脱羧形成的。左半二烷基马来酸酐部分具有与吐出霉素相同的结构,并具有相似的富集模式。如上所述,C-1'和-7'来源于[l-l 3C]乙酸盐,C-2'、-3'和-4'来源于[2-13C]乙酸盐。这种标记模式表明,酸酐部分是由一个丙酸分子与源自m-酮戊二酸的C-5单元缩合形成的,就像互变异霉素一样(图6)。由于互交霉素的二烷基马来酸酐部分的绝对构型与互变异霉素相同,?这两个部分都可以由类似的酶系统生物合成。由氨甲霉素的二烷基马来酸酐部分衍生的三甲酯的t CD曲线与互变异霉素的CD曲线相同。J. CHEM. SOC. PERKIN TRANS. 1 1995 2403 表 2 3C 化学位移和同位素掺入互变异霉素 相对富集 a 碳 [1-'3C]- [2-'3C]- [1-'3C]- [I-'“]- [2- 3C] - [3-'3C]- No.. 6( 3C) 醋酸酯 醋酸酯 丁酸酯 丙酸酯 丙酸酯 丙酸酯 1 120.0 1.6 3 I 139.0 - 3 156.0 ~~ 4 126.0 - 5 201.o 1.9 6 52.8 1.8 7 27.1 1.4 8 44.9 1.4 9 29.8 1.5 10 32.5 - 11 31.7 1.6 12 73.6 I .6 13 52.5 1.8 14 215.0 - 15 46.6 1.4 16 66.0 - 17 42.8 1.3 18 73.4 - 19 18.4 1.4 1' 170.0 - 3' 40.6 1.3 3' 63.0 1.3 4' 142.2 1.7 5' 142.9 1.5 6' 165.7 - 7' 164.8 - 7-Me 20.0 1.4 9-Me 19.2 1.5 13-Me 28.7 1.4 17-Me 10.3 2.0 5'-Me 10.2 2.0 1 “ 2” 20.5 13.9 -- ~ ~~ ~ 相对富集归一化为 C-2“ 信号的峰值强度。在JEOL FX-100FT NMR波谱仪上测量了实验性的3C NM R谱图,在JEOL GX-400 FT NMR上记录了2D Insufficient Specr。脉冲场梯度 (PFG) 2D- 在带有 PFG 单元的 JEOL CX-400 FT NMR 波谱仪上记录不充分的光谱。Micro NMR管由日本Shigemi Ltd制造。13C标记的乙酸盐和丙酸盐(90个原子%)购自加拿大MSD ISOTOPES。[1-'3C]丁酸盐(99原子%)购自美国ICON~-[rnethyl-'3C]蛋氨酸(98.2原子%)购自加拿大MSD ISOTOPES。[I ,2-13C,]甘氨酸(99原子%)购自美国ISOTEC,L-[1,2-'3C,]谷氨酸(99原子%)购自法国EURISO-TOP。'3C标记的产生吐出霉素的菌株的培养 螺旋螺旋霉菌属将在淀粉-酵母琼脂上生长的JC-84-44接种到含有70 cm3葡萄糖2%、可溶性淀粉1%、肉提取物O.l%、干酵母0.4%、大豆粉2.5%、NaClO.25%和K,HPO0.005%的400 cm3圆柱形烧瓶中,并在28“C下在旋转振荡器上培养48小时。将种子培养物的等分试样(0.5cm3)接种到相同的培养基中。在28“C的旋转摇床上进行发酵。发酵24小时后,将'3C标记的前体以0的浓度加入培养物中。6%(w / v),并继续发酵48小时。在[1,2-'3C,]甘氨酸和L-钠[1,2-'3C2]谷氨酸用0.1 mol dm-13水中和制备L-[1,2-'3C2]谷氨酸的情况下。接种后24、30、36和46 h,以0.007%(w/v)的剂量加入NaOH,前体,培养物进一步孵育24 h。滤液用EtOAc提取,菌丝体饼用丙酮提取。将丙酮提取物在减压下浓缩,得到水溶液,然后用EtOAc萃取。将两种EtOAc提取物合并并在减压下蒸发至干。残留物在硅胶柱上用CHC1,-MeOH(4:1)进行色谱。洗脱液用硅胶TLC监测,然后用反相HPLC进一步纯化[Senshu pak ODS-H柱用MeOH-H,O-缓冲液(1%二乙胺甲酸,pH 7.3),8:1:1作为溶剂体系]。用1 mol dm-3 HCl调节pH至4,浓缩得水溶液,再用EtOAc萃取,减压蒸发,得到纯互交霉素。从每490 cm3的培养液中补充有3C标记的前体,获得20-45mg纯化的l3C-labe1led互变异霉素。[1,2-'3C,]甘氨酸标记和L-[I,2-'3C2]谷氨酸标记的互交霉素的得率分别为35.7 mg和29.9 mg。I3C标记的自交霉素生成菌株的培养和I3C标记的互交霉素的分离 用于制备标记的互交霉素,灰链霉菌属。使用JC-84-1223。The cultural J. CHEM. SOC. PERKIN TRANS. 1 1995 \COOHr ICOSCoA pmpionna DOH OH 0 OH 0 0 O0 k 0 图 6 互变异霉素的生物合成。a:来源于[2-'梯丙酸酯的C-2甲基碳。 条件和分离程序与3C标记的互变异霉素相同,只是将互变异霉素发酵液的体积增加到980 cm3,并将HPLC的MeOH缓冲液调节至pH 4.0。致谢 这项工作得到了日本教育、科学和文化部的科学研究补助金的支持。参考文献 1 X.-C.Cheng, T. Kihara, H. Kusakabe, J. Magae, Y. Kobayashi, R.-P.方,Z.-F.Ni,Y.-C.Sheng, K. KO, I. Yamaguchi 和 K. Isono, J. Anfibiot., 1987,40, 907.2 X.-C.Cheng, T. Kihara, X. Ying, M. Uramoto, H. Osada, H. Kusakabe, B. N. Wang, Y. Kobayashi, K. KO, I. Yamaguchi, Y.-C.Sheng 和 K. Isono, J. Antihiot., 1989,42, 141.3 (a)M. Ubukata, X.-C.Cheng 和 K. Isono, J. Chem. Soc., Chern.Commun., 1990, 244;(八)X.-C. Cheng, M. Ubukata 和 K. Isono, J. Antibiot., I990,43, 809.4 X.-C.Cheng, M. Ubukata 和 K. Isono, J. Antibiot., 1990,43, 890.5 H. Osada, J. Magae, C. Watanabe 和 K. Jsono, J.抗生素, 1988,41,925.6 J. Magae, H. Osada, H. Fujiki, T. C. Saido, K. Suzuki, K. Nagai and K. Isono, Proc. Jpn. Acad., Ser. B., 1990,66, 209.7 C. MacKintosh 和 S. Klumpp,FEBS Lett.,1991 年,第 285,245 页。8 M. Hori, J. Magae, Y.-G.Han, D. J. Hartshone and H. Karaki, FEBS Lett., 1991, 285, 245.9 M.乌布卡塔,X.-C.Cheng, M. Isobe 和 K. Isono, J. Chem. Soc., Perkin Trans.我,1993,617。10 H. Oikawa, M. Oikawa, T. Ueno 和 A. Ichihara, Tetrahedron Lett., 1994,35,4809.11 M. Ubukata, J. Uzawa 和 K. Isono, J. Am. Chem. Soc., 1984,106, 2213.12 T. Kihara, M. Ubukata, J. Uzawa 和 K. Isono, J. Antibiot., 1989, 42, 919.13 A.巴克斯、R.弗里曼、T.A.弗伦基尔和M.H.莱维特、J.马格。侦察, 1981,43,478.14 S. Omura, A. Nakagawa, H. Takeshima, K. Atusmi, J. Miyazaw, F. Piriou and G. Lukacs, J. Am. Chem. Soc., 1975,97,6600.15 S. Omura, K. Tsuzuki, A. Nakagawa 和 G. Lukacs, J. Antibiot., 1983,36, 61 1.16 场梯度 2-D 检测自然丰度的技术不足 “C 13C 耦合将在其他地方报道。17 (a) C. E. Moppett and J. K. Sutherland, J. Chem. Soc., Chem. Commun., 1966, 772;(h) J. L. Bloomer、C. E. Moppett 和 3.K. Sutherland, J. Chem. Soc., Chem Commun., 1965,619.18 D. J. Douglas, U. P. Ramsey, J. A. Walter 和 J. L. C. Wright, J. Chem. Soc., Chrm. Commun., I 992, 714.19 T. Hemscheidt 和 E. D. Spenser, J. Am. Chem. Soc., 1993,115,3020.20 D.L.特纳,J.马格恩。共振, 1982,49, 175.论文 5/03359D 1995 年 5 月 25 日收稿 1995 年 6 月 6 日录用

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号